Urban Transit System - Introduction

Urban Transit System/Link as Natural MTR Extensions - Advantages

- Provide fully integrated feeder services and convenient interchange to the railway mainlines.
- Provide MTR network coverage to outlying areas with only moderate public transport demand.
- Integrated fare structure for interchange with MTR.
- Flexible in route planning (both horizontal and vertical).
- Effectively utilize the space above road and penetrate into developments.

Urban Transit System/Link as Natural MTR Extensions - Advantages (Con't)

- Require relatively little road space and only moderate disruption to the public during construction.
- More viable than heavy rail (low construction costs and easy maintenance).
- Environmentally friendly.
- Significant contribution to Government public transport policy objectives.

Generic Description and Application

- (Heavy) rail-based urban transportation system such as MTR requires significant investment of initial capital costs for construction/procurement and notable long term costs for operation and maintenance.
- Other forms of (low to medium capacity) Urban Transit System are already in operation or being gradually developed overseas such as Japan and various European cities, serving moderate demand or acting as feeder links to the main railway lines.
- All these transit systems are electrically powered, relatively economical and also bear the advantage of bringing quantifiable improvements to the local air quality.

Generic Description and Application (Con't)

• Proven application of grade-separated Urban Transit Systems worldwide (excluding heavy rail Metro) may be classified into the following categories.

<u>System Peak Demand (pax/hr)</u> High (>20,000) Medium (8,000 - 20,000)

Low (<8,000)

Suitable System(s) Monorail (up to 30,000 pph) Monorail AGT (rubber type) Cable-hauled Transit System Travelator on footbridge Hillside Escalator

Monorail

U T S

Automated Guideway Transit (AGT)

Cableliner

Monorail - Characteristics

- Normally straddle type, rubber tyres on narrow concrete/steel guideways (i.e. I-beams of 0.8m wide x 1.6m deep) supported on concrete/steel columns. Visually more acceptable than heavy rail viaducts and bridges.
- Monorail systems are fully automatic (ie. driverless) with ATO/ATP. Trains on 2-car to 8-car formation and self propelled by electric motors using DC traction power at 1500V.
- Typical system capacity ranges from 8,000 pphpd to 30,000 pphpd. About 190 pax per car.

Monorail - Characteristics (Con't)

- Stations normally elevated with waist height platform screen gates. Lesser amount of E&M plant rooms and facilities as compared with heavy rail stations.
- Requirement for dedicated maintenance and stabling depot to be located at-grade.
- Ability to fully integrate with public walkway and commercial complex Japanese experience.
- Approx. capital cost: \$400M/km (for 20,000 pph capacity, excluding stations)
- Cost for a typical monorail station (elevated, 70m in length): \$230M

Comparison of Key Technical Features

Item	Monorail	MTR	
Maximum Speed (Average)	80 km/hr (36)	80 km/hr (40)	
Max. Track Gradient	5%	4%	
Min. Curve Radius	70m	300m	
Overhead Structure	$1.6m(deep) \times 0.8m(wide)$	$1.5m(deep) \times 4.5m(wide)$	
(Single Track)	Concrete Guideway (I-Beam)	Box Girder Viaduct	
Noise Level	70 dBA(normal speed)	90 dBA(normal speed)	
	65 dBA(reduced speed)	85 dBA(reduced speed)	

Automated Guideway Transit (AGT) - Characteristics

- AGT is another guideway transit system in which rubber tyre cars travel on special concrete track supported on viaduct structures. AGT trains can accommodate up to 6 cars.
- Proven experience in Japan for fully automatic operation, with ATO/ATP. Traction power supply using 600Vdc 3rd rail. Stainless steel car body with side-guided or central-guided steering system.
- A capacity of 20,000 pph is quoted as the upper limit of the Japanese AGT systems now in operation. Capacity per car about 125 pax.

· 1

Automated Guideway Transit (AGT) - Characteristics (Con't)

- Stations normally elevated with platform screen gates and mechanical ventilation. Unmanned operation. Ticketing contactless smart cards.
- Minimum requirement for plant rooms at station.
- Requirement for dedicated maintenance and stabling depot to be located at-grade.
- Approx. capital cost: \$370M/km (for 20,000 pph capacity, excluding stations)
- Cost for a typical AGT station (elevated, 70m in length): \$230M

AGT Guideway

AUTOMATED GUIDEWAY TRANSIT (AGT)

Train Formation

Steering Guide System

Urban Transit System

Comparison of Key Technical Features

Item	AGT	MTR	
Maximum Speed (Average)	60 km/hr (36)	80 km/hr (40)	
Max. Track Gradient	6%	4%	
Min. Curve Radius	50m	300m	
Overhead Structure	1.5m(deep)x 4.0m(wide)	1.5m(deep)x 4.5m(wide)	
(Single Track)	Concrete Guideway (I-Beam)	Box Girder Viaduct	
Bored Tunnel	5.0m dia.	5.4m dia.	
Noise Level	65 dBA(normal speed) 90 dBA(normal speed)		
	60 dBA(reduced speed)	85 dBA(reduced speed)	

Cable-hauled Transit System Cableliner (by Doppelmayr) - Characteristics

- Detachable funicular system drawn by a continuously moving cable adopts the concept of cable car with constant rope speed at 30 km/hr.
- No driving or control mechanism on board each vehicle, i.e. driverless and fully automatic operation. Main drive room at termini or intermediate station(s).
- Vehicle travelling on rubber wheels, reversing at termini by turntables.
- Steel truss to serve as track guideway, with steel columns spanning at 30m. Visually pleasing and environmentally acceptable supporting structures as compared with other self-propelled transit systems.

Track Structure of Cable-liner

Cable-hauled Transit System Cableliner - Characteristics (Con't)

- Capacity only up to 6,000 pphpd, with 50 pax/vehicle.
- Inside stations, vehicles to decelerate at creeping speed (of 0.28 m/s) for passenger boarding and alighting similar to cable car operation in Ocean Park.
- No need for maintenance depot all vehicles can be maintained inside a garage (on single level or multi-level) located next to any station.
- Approx. capital cost: \$200M/km (for 6,000 pph capacity, excluding stations)
- Cost for a typical cableliner station (elevated, 20m in length): \$50M

Shopping Centre Project – Austria Terminal – Station Building

.

The CABLE Liner - the APM-System for the future

CABLE Liner – Terminal

•

The CABLE Liner - the APM-System for the future

Intermediate Station

Parking and maintenance area Standard APM (Automated People Mover) Layout for airports and urban transit

Cableliner Multi-level garage

Cableliner Main Drive Room

Comparison of Key Technical Features

Item	Cableliner	MTR	
Maximum Speed	30 km/hr (rope speed)	80 km/hr	
Max. Track Gradient	15%	4%	
Min. Curve Radius	45m	300m	
Overhead Structure	Steel Truss	$1.5m(deep) \times 4.5m(wide)$	
(Single Track)	on Steel Columns	Box Girder Viaduct	
Noise Level	60 dBA	90 dBA(normal speed)	
		85 dBA(reduced speed)	

Urban Transit System

Cable-hauled Transit System UTS (by Leitner) - Characteristics

- Rope-drawn funicular railway with vehicles fixed to the haul rope adopts the well proven technology of to-andfro funicular systems such as the Peak Tram. Max. rope speed up to 50 km/hr.
- Same as the cableliner, no driving or control mechanism on board each vehicle driverless and fully automatic operation. Main drive room and control room at termini.
- Vehicles travelling on composite wheels (steel with rubber units) to reduce noise emission. Vehicles reversing at terminus by automatic (de)coupling devices.

Urban Transit System

Cable-hauled Transit System UTS - Characteristics (Con't)

- Steel truss and tubular sections to serve as track guideway, with steel or concrete columns spanning at 30m.
- Capacity up to 12,000 pphpd, with 140 pax per vehicle.
- Vehicles moving and stopping at all stations simultaneously. All stations must be at equal distance and with platform screen gates.
- No need for maintenance depot all vehicles can be maintained on an overrun track located at terminus.
- Approx. capital cost: \$180M/km (for 6,000 pph capacity, excluding stations)
- Cost for a typical UTS station (elevated, 30m in length): \$60M

Elevation

Front View

9000 12800

ι.

Single Platform

Elevation

Front View

Double Platform

UTS Typical Station

•

Comparison of Key Technical Features

Item	UTS	MTR	
Maximum Speed (Average)	50 km/hr (36)	80 km/hr (40)	
Max. Track Gradient	20%	4%	
Min. Curve Radius	60m	300m	
Overhead Structure	Steel Truss	$1.5m(deep) \times 4.5m(wide)$	
(Single Track)	on Steel Columns	Box Girder Viaduct	
Noise Level	65 dBA	90 dBA(normal speed)	
		85 dBA(reduced speed)	

Urban Transit System

Summary of System Comparison

Item	MTR	Monorail	AGT	Cableliner	UTS
Capacity	85,000	30,000	20,000	6,000	12,000
(pphpd)	(312 pax/car)	(190 pax/car)	(125 pax/car)	(50 pax/car)	(140 pax/car)
Moving Gear	Steel Wheel	Rubber Tyre	Rubber Tyre	Rubber Wheel	Composite Wheel
Maximum Speed	80 km/hr	80 km/hr	60 km/hr	30 km/hr	50 km/hr
(Average)	(40)	(36)	(36)	(rope speed)	(36)
Max. Track Gradient	4%	5%	6%	15%	20%
Min. Curve Radius	300m	70m	50m	45m	60m
Overhead Structure	1.5m(deep) x 4.5m(wide)	1.6m(deep) x 0.8m(wide)	1.5m(deep) x 4.0m(wide)	Steel Truss on Steel	Steel Truss on Steel
(Single Track)	Box Girder Viaduct	Concrete Guideway(I-Beam)	Box Girder Viaduct	Columns	Columns
Bored Tunnel	5.4m dia.	6.5m dia.	5.0m dia.	N/A	N/A
Noise Level	90 dBA(normal speed)	70 dBA(normal speed)	65 dBA(normal speed)	60 dBA	65 dBA
	85 dBA(reduced speed)	65 dBA(reduced speed)	60 dBA(reduced speed)		
Capital Cost	\$600M/km	\$400M/km	\$370M/km	\$200M/km	\$180M/km
Station Cost	\$500M	\$230M	\$230M	\$50M	\$60M
Operating Cost	\$50M/year	\$20M/year	\$20M/year	\$15M/year	\$15M/year