REFERENCE NO.: 2531052A

THE DEMOLITION OF EXISTING SUPERSTRUCTURES AT CAROLINE HILL ROAD SITE, CAUSEWAY BAY (PROGRAMME NO. 794CL)

TRAFFIC IMPACT ASSESSMENT - UPDATED REPORT

DECEMBER 2017

Submitted to: Architectural Services Department Submitted by: Parsons Brinckerhoff (Asia) Limited www.wsp-pb.com

Document information

Client: Architectural Services Department

Title: THE DEMOLITION OF EXISTING SUPERSTRUCTURES AT CAROLINE HILL ROAD SITE, CAUSEWAY BAY

(PROGRAMME NO. 794CL)

Subtitle: Traffic Impact Assessment (Updated Report)

Document No: 2531052A-TP Rev3 Date: 28 DECEMBER 2017

Rev	Date	Details
0 .	25/11/2016	Draft Report
1	26/01/2017	Final Report
2	29/06/2017	Updated Report
3	22/12/2017	Updated Report (with Supplementary Junction Assessment)

Author, Reviewer and Approver details							
Prepared by:	Catherina Chu	Date: 22/12/2017	Signature:				
Reviewed by:	Victoria Ng	Date: 22/12/2017	Signature:				
Approved by:	Craig Wright	Date: 22/12/2017	Signature: CLIA				

Distribution

WSP | Parsons Brinckerhoff file

© WSP | Parsons Brinckerhoff 2017

Copyright in the drawings, information and data recorded in this document (the information) is the property of WSP | Parsons Brinckerhoff. This document and the information are solely for the use of the authorised recipient and this document may not be used, copied or reproduced in whole or part for any purpose other than that for which it was supplied by WSP | Parsons Brinckerhoff. WSP | Parsons Brinckerhoff makes no representation, undertakes no duty and accepts no responsibility to any third party who may use or rely upon this document or the information.

Document owner

Parsons Brinckerhoff (Asia) Ltd. 7/F One Kowloon 1 Wang Yuen Street Kowloon Bay

Hong Kong Tel: +852 2579 8899 Fax:+852 2856 9902 www.wsp-pb.com

Certified to ISO 9001, ISO 14001, OHSAS 18001

CONTENTS

1	INTRODUCTION	1
1.1	Background	1
1.2	Scope	1
2	THE PROJECT	2
2.1	Site Location	2
2.2	The Proposed Demolition Works	2
2.3	Demolition Period	3
3	TRANSPORT PROVISION	4
3.1	Access Arrangement	4
3.2	Construction Traffic Routing	4
4	EXISTING TRAFFIC CONDITION	6
4.1	Road Network	6
4.2	Public Transport	6
5	TRAFFIC FORECAST	8
5.1	Methodology	8
5.2	Traffic Count Survey	8
5.3	Traffic Growth Factor	9
5.4	Traffic Generation in Demolition Period	10
5.5	Future Development By Year 2019	11
6	VEHICULAR TRAFFIC ANALYSIS	12
6.1	Methodology	12
6.2	Junction Performance Analysis - Existing	12
6.3	Reference and Design Flows	13
6.4	Junction Performance Analysis - Design	13

7	TRAFFIC ARRANGEMENT DURING SPEICAL EVENTS IN HONG KONG STADIUM	16
8	CONCLUSIONS	17

LIST OF TABLES

Table 4.2.1	Franchised Bus Routes
Table 4.2.2	GMB Route
Table 5.2.1	Key Junctions in the Study Area
Table 5.3.1	Average Annual Daily Traffic from 2011 to 2015
Table 5.3.2	Average Annual Daily Traffic from 2012 to 2016
Table 5.3.3	Population and Employment Forecast
Table 6.2.1	Results of Junction Analysis for Background Traffic Flows
Table 6.4.1	Junction Performance Analysis – (2019 Reference and Design [Construction] Traffic)
Table 6.4.2	Junction Performance Analysis – (2019 Design [Construction] Traffic) without and with
	Po Leung Kuk East Wing Redevelopment

LIST OF FIGURES

Figure 2.1.1	Proposed Site of the Project and the Area of Influence
Figure 3.1.1	Proposed Construction Vehicular and Workers Access to the CHRS
Figure 3.2.1	Proposed Construction Inbound and Outbound Route to and from CHRS
Figure 5.2.1	Key Juncitons Location
Figure 6.2.1	2016 Existing Traffic – Reference Flow
Figure 6.3.1	2019 Forecast Traffic – Reference Flow
Figure 6.3.2	2019 Forecast Traffic – Design (Construction) Flow

APPENDICES

APPENDIX A: Calculation Sheet for Junction Performance

1 INTRODUCTION

1.1 BACKGROUND

The Government targets to make available the existing Superstructures at Caroline Hill Road Site (CHRS) located the junction of Leighton Road and Caroline Hill Road in Causeway Bay for future development. The site covers an area of about 26,300m².

The CHRS comprises a private lot previously granted to PCCW and 3 allocations currently allocated by Lands Department to Electrical and Mechanical Services Department (EMSD), Civil Aids Service (CAD) and Hong Kong Post.

In 2016 a Traffic Impact Assessment (TIA) was commissioned for this demolition project during the feasibility stage. The TIA report, namely "Traffic Impact Assessment for The Demolition of Existing Superstructures at Caroline Hill Road Site, Causeway Bay", had been submitted and accepted by Transport Department (TD) on 27 January 2017. The TIA was updated with information on the progress of the committed developments in the vicinity area of the project site and was approved by TD on 29 June 2017.

Following recent local consultation, the local community has raised concern on the traffic performance of some existing road junctions which were beyond the original TIA study scope, this TIA therefore extend the original study scope to cover two additional junctions, namely Moreton Terrace/ Causeway Road junction and Moreton Terrace/ Tung Lo Wan Road junction.

The demolition works are targeted to commence in the 2nd quarter of 2018 for completion in the 3rd quarter of 2019. The design year for the traffic forecast was set for year 2019 in the approved TIAs and this remains unchanged.

The purpose of the TIA report is to conduct traffic surveys and determine the adverse traffic impact caused by the above demolition project during demolition period on the adjacent road networks.

1.2 SCOPE

The scope of this TIA is outlined as below:

- Conduct traffic surveys to collect the existing vehicular traffic flows within the study area;
- Analyse the existing traffic condition in the vicinity of the CHRS;
- Estimate the potential construction traffic generation and attraction due to the demolition of the existing superstructures;
- Assess the future traffic situation in the adjacent road networks and junction capacities could satisfactorily accommodate the additional traffic volumes during the construction phase of the project; and
- Recommend traffic engineering solutions/improvement measures or traffic control and management measures at the problem areas identified, if required.

2 THE PROJECT

2.1 SITE LOCATION

The project site is located at the junction of Leighton Road and Caroline Hill Road in Causeway Bay. Currently, the project site is an empty lot previously granted to EMSD Headquarters, CAD Building, Post Office Recreation Club and PCCW Recreation Club. Figure 2.1.1 shows the location of the proposed site and the adjacent road network within the Area of Influence (AOI).

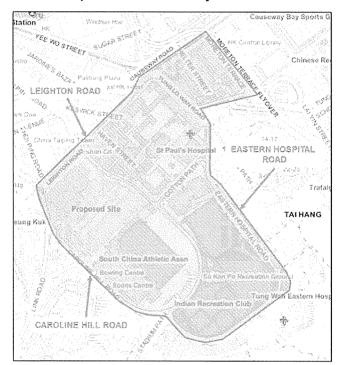


Figure 2.1.1 Proposed Site of the Project and the Area of Influence

2.2 THE PROPOSED DEMOLITION WORKS

The CHRS demolition works included the following existing superstructure:

- ex-Electrical and Mechanical Services Department Headquarters including;
 - o a 11-storey office building,
 - o a 5-storey building for Apprentice Workshop,
 - o a 7-sorey building for staff quarters,
 - three 1-storey workshops,
 - a 1-storey storage shed and
 - a covered vehicle workshop.
- a 6-storey ex-Civil Aid Service building;
- · a 1-storey building for Post Office Recreation Club; and
- a 3-storey building for Pacific Century Cyber Works Recreation Club.

The demolition will be led by the ArchSD. Private contractor will be employed for the demolition of the CHRS as well as associated works. The CHRS will be handed over to the Planning Department / ArchSD for future development work.

This study is mainly focus on the traffic impact during demolition period.

2.3 DEMOLITION PERIOD

During construction, it will involve demolition of the existing superstructures that will generate construction traffic. The demolition works are targeted to commence in the 2nd quarter of 2018 for completion in the 3rd quarter of 2019. The design year for the traffic forecast was set for year 2019 in the approved TIAs and this remains unchanged.

3 TRANSPORT PROVISION

3.1 ACCESS ARRANGEMENT

The proposed construction vehicular access to the CHRS is on Caroline Hill Road. Figure 3.1.1 shows the proposed access road of the CHRS at Caroline Hill Road.

Entering County

Enteri

Figure 3.1.1 Proposed Construction Vehicular and Workers Access to the CHRS

3.2 CONSTRUCTION TRAFFIC ROUTING

Since the study area is located in the busier district in Hong Kong Island, therefore in order to minimise the impact to the local road network, it is proposed to have the designated construction traffic routes to and from the CHRS.

According to the information from Environmental Protection Department (EPD), the inert construction and demolition waste is assigned to the Chai Wan Public Fill Barging Point and Tseung Kwan O Area 137 Fill Bank designated disposal sites. Other construction waste are assigned to the South East New Territories (SENT) Landfill at Tseung Kwan O. From the traffic points of view, the outbound construction traffic will be head to the Chai Wan or Tseung Kwan O via Eastern Corridor (Eastbound).

Based on the EPD information, all construction traffic will travel from either Kowloon East or Hong Kong Island East via Eastern Corridor. Figure 3.2.1 shows the proposed construction traffic route to and from the CHRS at Caroline Hill Road. The details inbound and outbound construction routes are proposed as follow:

Inbound Route -

Eastern Corridor (Westbound) → Hing Fat Street (Southbound) → Wing Hing Street (Eastbound) → King's Road (Westbound) → Causeway Road (Westbound) → Leighton Road (Westbound) → Caroline Hill Road (Southbound) → CHRS

Outbound Route -

ment of the Hong Kong SAR

CHRS \rightarrow Caroline Hill Road (Southbound) \rightarrow Cotton Path (Eastbound) \rightarrow Eastern Hospital Road (Northbound) \rightarrow Tung Lo Wan Road (Eastbound) \rightarrow Moreton Terrace (Northbound) \rightarrow Causeway Road (Eastbound) \rightarrow Hing Fat Street (Northbound) \rightarrow Eastern Corridor (Eastbound)

radety [] (A) Causeway Bay Station Victoria Park Mandy fine Causeway Bay Sports Ground Office TEE NO STREET 24.8°C 24.8°C 185%, **10** 1886 Vands Chinese Recreation Club WAN ROAD 20010194K 3/4 WHAT AVENUE St Paul's Histoital Timos Square ÷ Fontana Gardens TALTIAND ROAD LE IGHTON ROAD Legyra Stig Trafalgar Court PAI HANG ROAD TAIHANG Po Leung Kul ingower Cricket Club The Leighton Hill SPORTS ROAD HK Fuotbas Club Inbound Construction Traffic Route **Outbound Construction Traffic Route** n Rocreati 4 Û

Hong Kong Stadium

Beverly Hill

Figure 3.2.1 Proposed Construction Inbound and Outbound Route to and from CHRS

4 EXISTING TRAFFIC CONDITION

4.1 ROAD NETWORK

The existing vehicular and pedestrian access to the CHRS is Caroline Hill Road which connects to the Eastbound of Leighton Road.

Caroline Hill Road - It is a Local Distributor (LD) road with two-lane two way connecting Leighton Road. The width of the Caroline Hill Road is 7.7m.

Leighton Road - It is a District Distributor (DD) road with 3-4 lanes carriageway connecting east of Causeway Road and the west of the junction of Morrison Hill Road and Canal Road. The width of the Leighton Road is 12m.

4.2 PUBLIC TRANSPORT

The CHRS is located close to high capacity public transport services. The MTR Causeway Bay Station is located within 500m, or about 10 minutes' walk from the CHRS.

In terms of the public bus, there are 30 day-time bus routes and 4 over-night bus routes stop on Leighton Road, Caroline Hill Road and Tung Lo Wan Road. The details of franchised bus routes are given in Table 4.2.1.

Table 4.2.1 Franchised Bus Routes

Operator	Route No.	Route	Nearest Stop		
СТВ	5B	Kennedy Town – Causeway Bay	St. Paul's Hospital, Tung Lo Wan Road / Caroline Hill Road		
СТВ	8X	Siu Sai Wan – Happy Valley	Bonaventure House, Leighton Road / Caroline Hill Road		
СТВ	10	Kenneth Town – North Point Ferry Pier	Bonaventure House, Leighton Road / Caroline Hill Road		
СТВ	11	Central – Jardine's Lookout	St. Paul's Hospital, Tung Lo Wan Road		
СТВ	19	Siu Sai Wan – Happy Valley	Bonaventure House, Leighton Road / Caroline Hill Road		
CTB	19P	Shau Kei Wan – Happy Valley	Caroline Hill Road		
СТВ	25A	Wan Chai – Baraemar Hill	St. Paul's Hospital, Tung Lo Wan Road		
СТВ	72	Wah Kwai Estate – Causeway Bay	St. Paul's Hospital, Tung Lo Wan Road		
СТВ	72A	Sham Wan – Causeway Bay	St. Paul's Hospital, Tung Lo Wan Road		
СТВ	76 Shek Pai Wan – Causeway Bay		St. Paul's Hospital, Tung Lo Wan Road /		
			Bonaventure House, Leighton Road /		
			Caroline Hill Road		
СТВ	96	Lei Tung Estate – Causeway Bay	St. Paul's Hospital, Tung Lo Wan Road		
СТВ	511	Central – Tai Hang Drive	St. Paul's Hospital, Tung Lo Wan Road		
СТВ	592	South Horizons – Causeway Bay	St. Paul's Hospital, Tung Lo Wan Road		
СТВ	962	Tuen Mun – Causeway Bay	St. Paul's Hospital, Tung Lo Wan Road		
СТВ	962B	Tuen Mun Admiralty	St. Paul's Hospital, Tung Lo Wan Road		
СТВ	962P	Tuen Mun – Causeway Bay	St. Paul's Hospital, Tung Lo Wan Road		
СТВ	962S	Tuen Mun – Causeway Bay	St. Paul's Hospital, Tung Lo Wan Road		
СТВ	962X	Tuen Mun – Causeway Bay	St. Paul's Hospital, Tung Lo Wan Road		
СТВ	969	Tin Shui Wai Town Centre – Causeway Bay	St. Paul's Hospital, Tung Lo Wan Road		
СТВ	969P	Tin Shui Wai Town Centre – Causeway Bay	St. Paul's Hospital, Tung Lo Wan Road		
СТВ	N11	Central – Airport	St. Paul's Hospital, Tung Lo Wan Road		
СТВ	N962	Tuen Mun – Causeway Bay	St. Paul's Hospital, Tung Lo Wan Road		
СТВ	N969	Tin Shui Wai Town Centre – Causeway Bay	St. Paul's Hospital, Tung Lo Wan Road		
KMB	108	Shing Tak Street – Braemer Hill	Bonaventure House, Leighton Road		

Operator	Route No.	Route	Nearest Stop		
NWFB	23B Braemar Hill – Park Road / Robinson Road		Bonaventure House, Leighton Road / Caroline Hill Road		
KMB / CTB	690	Tseung Kwan O – Central	Caroline Hill Road		
KMB/CTB	N182	Central – Sha Tin	St. Paul's Hospital, Tung Lo Wan Road		
KMB / NWFB	112	North Point – So Uk Estate	Bonaventure House, Leighton Road		
			Bonaventure House, Leighton Road		
	KMB / NWFB 116 Quarry Bay – Tsz Wan Shan				
KMB/NWFB	NWFB 601 Admiralty – Po Tat Estate		Caroline Hill Road		
KMB / NWFB	680 Admiralty – Ma On Shan		Caroline Hill Road		
KMB / NWFB	680A	Ma On Shan - Admiralty	Caroline Hill Road		
KMB / NWFB	680B	Ma On Shan - Admiralty	Caroline Hill Road		
KMB / NWFB	KMB / NWFB 680P Ma On Shan - Admiralty		Caroline Hill Road		

In addition, 15 Green Mini-Bus (GMB) Routes around the CHRS. The detail of the GMB route is given in Table 4.2.2.

Table 4.2.2 GMB Route

Route No.	Routes	Frequency (Mins)
14M	Causeway Bay - Jardine's Lookout	4 – 10
21A	Causeway Bay – Lai Tak Tsuen	5 – 10
21M	Causeway Bay – Tai Hang Drive	6 – 12
26	Causeway Bay – HK Adventist Hospital	15 – 20
28	Upper Baguio Villa - Causeway Bay	5 – 15
28\$	Providence Bay - Shatin Town Centre	30
30	Causeway Bay – Happy Valley	6 - 10
36	Ap Lei Chau – Wan Chai	4 per day (AM only)
36S	Ap Lei Chau – Causeway Bay	20 – 40
36X	Ap Lei Chau – Causeway Bay	8 – 15
39M	Yue On Court – Tin Hau Station	8 – 15
40	Stanley Village – Causeway Bay	3 – 15
40X	Stanley Prison – Causeway Bay	4 – 9
56	Robinson Road - North Point	6-8
56A	Robinson Road - Causeway Bay	8 – 15

5 TRAFFIC FORECAST

5.1 WETHODOLOGY

In accordance with the proposed schedule of demolition works are targeted to commence in the 2^{nd} quarter of 2018 for completion in the 3^{rd} quarter of 2019. The design year for the traffic forecast was set for year 2019 in the approved TIAs and this remains unchanged.

It is anticipated that the future local road network will remain unchanged and there is no plan for any major road infrastructure in any connection with the Leighton Road and Caroline Hill Road by year 2019. The growth factor method was used to project the traffic forecast for the design year (2019) based on the historic traffic volumes for the past five years in Annual Traffic Census (ATC) Reports published by Transport Department, 2011-based Territorial Population and Employment Data Matrices (TPEDM) from Planning Department (PlanD) and existing counts in the vicinity of the study area.

The forecast were further updated to produce the design year 2019 traffic forecasts for this project. The additional traffic was then assigned to the future local road network and combined with the background traffic to create the design year forecast for assessment.

5.2 TRAFFIC COUNT SURVEY

In order to evaluate the existing traffic conditions, classified turning movement surveys were conducted at the key junctions (J1 to J7) in the study area, as detailed in Table 5.2.1 and shown in Figure 5.2.1, on a normal weekday 1 November 2016 between 7:30am – 10:00am, 11:30am – 13:30pm and 5:00pm – 7:00pm.

From the observed vehicular traffic count survey, the morning, noon and evening peak hours were identified as 8:15am – 9:15am, 12:00noon – 1:00pm and 5:30pm – 6:30pm respectively. The detail of the junction performance analysis is presented in Section 6.4 of this report.

The AOI covered in this TIA has been extended to cover two additional junctions, namely Moreton Terrace/ Causeway Road junction and Moreton Terrace/ Tung Lo Wan Road junction which are identified as J8 and J9 respectively. Classified turning movement surveys for these two junctions were conducted on a normal weekday 12 December 2017 at the same peak hours as previous identified for J1 to J7.

Table 5.2.1 Key Junctions in the Study Area

Junction No.	Junction Name	Junction Type
J1	Caroline Hill Road / Link Road	Priority
J2	Caroline Hill Road / Leighton Road	Signal
J3	Caroline Hill Road / Leighton Road / Pennington Street	Signal
J4	Leighton Road / Tung Lo Wan Road	Signal
J5	Eastern Hospital Road / Tung Lo Wan Road / Ka Ning Path	Signal
J6	Eastern Hospital Road / Cotton Path	Priority
J7	Caroline Hill Road / Cotton Path	Priority
J8	Causeway Road / Moreton Terrace	Signal
J9	Tung Lo Wan Road / Moreton Terrace	Signal

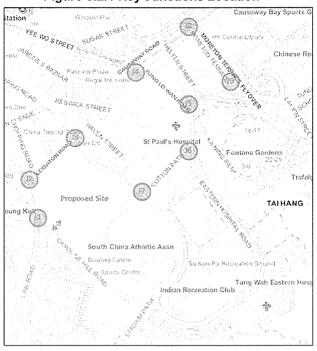


Figure 5.2.1 Key Junctions Location

5.3 TRAFFIC GROWTH FACTOR

As mentioned in Section 5.1, the growth factor method was used to project the traffic forecast for the design year (2019) with reference to the historic traffic growth trend between 2011 and 2015 for J1 to J7 and between 2012 and 2016 for J8 and J9 respectively in Annual Traffic Census (ATC) Reports published by Transport Department, 2011-based Territorial Population and Employment Data Matrices (TPEDM) from Planning Department (PlanD) and existing counts in the vicinity of the study area.

The Average Annual Daily Traffic (AADT) data in the ATC Reports from 2011 to 2015 and from 2012 to 2016 were extracted and complied in Table 5.3.1 and Table 5.3.2 below.

Station (Road Link) 2011 2012 2013 2014 2015 Weighted Average Annual Growth (%) 2608 - Caroline Hill Rd (Leighton Rd and 5060 5060 5340 4640 5290 +0.54% Yun Ping Rd) 1212 - Irving St & Pennington St 12150* 12340* 11280 13950 14130* (Leighton Rd and Yee Wo St) 1847 - Leighton Rd (Canal Rd E and 29140 30100 29700* 29490* 28550* Wong Nai Chung Rd) 2036 - Leighton Rd (Irving St and 18760* 15960 15040 14930* 14450* Percival St) 1631 - Leighton Rd (Morrison Hill Rd 36800 36720* 36240* 35980* 44490 and Canal Rd E) 1414 - Leighton Rd (Tung Lo Wan Rd 23600* 23970* 23960* 24660 25060 and Irving St) 2035 - Leighton Rd (Wong Nai Chung 31050* 27640 29140 28930* 28000* Rd and Percival St)

Table 5.3.1 Average Annual Daily Traffic Data from 2011 to 2015

^{*} AADT estimated values by Growth Factor

Weighted Average Station (Road Link) 2012 2013 2014 2015 2016 Annual Growth (%) 2608 - Caroline Hill Rd (Leighton Rd and 5060 5340 4640 5290 6630 Yun Ping Rd) 1212 - Irving St & Pennington St 12340* 11280 13950 14130* 14130* (Leighton Rd and Yee Wo St) 1847 - Leighton Rd (Canal Rd E and 29490* 30100 29700* 28550* 22620 Wong Nai Chung Rd) 2036 - Leighton Rd (Irving St and 15960 15040 14930* 14450* 14430* +1.10% Percival St) 1631 - Leighton Rd (Morrison Hill Rd 36720* 36240* 35980* 44490 40440 and Canal Rd E) 1414 - Leighton Rd (Tung Lo Wan Rd 23970* 23960* 24660 25060 25060* and Irving St) 2035 - Leighton Rd (Wong Nai Chung Rd 27640 29140 28930* 28000* 27960*

Table 5.3.2 Average Annual Daily Traffic Data from 2012 to 2016

and Percival St)

Linear regression analysis was applied to the AADT data, including the estimated values, from year 2011 to 2015 for J1 to J7 and from year 2012 to 2016 for J8 and J9 to obtain an annual growth factor for the study area. The calculated average annual growth rate, weighted by traffic volume, are +0.54% between years 2011 and 2015 for J1 to J7 and +1.1% between years 2012 and 2016 for J8 and J9.

Reference was also made to the 2011-based Territorial Population and Employment Data Matrices (TPEDM) land use data. The TPEDM data have been adopted and the data should have included the most up-to-date development planning in the vicinity. The population and employment forecast is summarized in Table 5.3.2 to estimate the traffic growth from year of 2011 to 2016 and 2016 to 2021.

Description	CTS Zone	Data	2011	2021	Annual Growth Rate (11 – 21)
Wan Chai	036	Population	17300	16400	-0.5
		Employment	7500	6050	-2.1
		036 Total	24800	22450	-1.0
	039	Population	14350	13050	-0.9
		Employment	9350	7200	-2.6
		039 Total	23700	20250	-1.6
Total Population			31650	29450	-0.7
Total Employment		16850	13250	-2.4	
Overall Total		48500	42700	-1.3	

Table 5.3.3 Population and Employment Forecast

From the Table 5.3.3, it showed that the local area overall total growth is -1.3% per annum for 2011 to 2021.

Hence, it is proposed to adopt a conservative annual growth of $\pm 0.54\%$ p.a. for J1 to J7 and $\pm 1.1\%$ p.a. for J8 and J9 from 2016 to 2019 for the traffic assessment in this study. This growth factor assumes a natural growth of background traffic in the future and represents a conservative estimation of the traffic demand in the design year(s).

5.4 TRAFFIC GENERATION IN DEMOLITION PERIOD

With reference to the information provided by ArchSD, based on the estimate demolition waste, it is estimated that the construction activities will generate and attract in average 24 trips of construction truck per day for each direction. Considering 8 working hours per day and pcu factor of 3 for construction truck, it is estimated that 9 pcu/hr/direction will be generated during peak hours in the demolition peak period.

^{*} AADT estimated values by Growth Factor

5.5 FUTURE DEVELOPMENT BY YEAR 2019

According to the information from Planning Department, there are three committed development and redevelopment proposals in the vicinity of the CHRS. The details are shown below:

5.5.1 ST PAUL'S HOSPITAL EXTENSION

The building plans for the St Paul's Hospital Extension has been approved in February 2016 and March 2016 and according to the information from St. Paul's Hospital Extension project lead architect, P&T Architects and Engineers Limited, the proposed consultation work of the project is scheduled in the 4th quarter of 2017 or 1st quarter of 2018 and targeted to be completed in 1st quarter of 2021. For the worst case scenario, it was assumed that the trip generation/attraction of the construction traffic from St Paul's Hospital Extension and the construction traffic route would be the same as CHRS, with the construction traffic of the extension project being 9 pcu/hr/direction.

5.5.2 REDEVELOPMENT OF GRAND STAND AT 88 CAROLINE RD

Based on the provided information, South China Athletic Association (SCAA) confirmed that construction for the redevelopment of the Grand Stand was commenced on 12 May 2016. As the traffic count survey for CHRS was conducted on 1 November 2016, the construction traffic generated by the redevelopment of the Grand Stand was included in the traffic survey count as a part of the local background traffic. Therefore, no additional traffic in either the construction traffic or development traffic will be further considered from this study.

5.5.3 THE REDEVELOPMENT OF EAST WING OF PO LEUNG KUK

Po Leung Kuk is contemplating to redevelop the East Wing of its headquarters which is located at 66 Leighton Road. Based on the provided information, Po Leung Kuk confirmed that the redevelopment is still at its preliminarily design stage without a solid programme. Therefore, no additional traffic in either the construction traffic or development traffic will be considered from this study.

6 VEHICULAR TRAFFIC ANALYSIS

6.1 METHODOLOGY

The junction capacity analysis was carried out at the key junctions highlighted in Table 5.2.1 that are likely to be affected by the proposed CHRS during demolition. The design years for junction capacity analysis are listed as below:

- Year 2016 (Existing)
- Year 2019 (Construction)

The junction capacity analysis was carried out in accordance with the procedures outlined in the Transport Planning and Design Manual (TPDM). The analysis was based on the observed traffic flows and traffic forecasts for the "Reference" scenarios (2019) and "Construction" scenarios (2019).

6.2 JUNCTION PERFORMANCE ANALYSIS - EXISTING

Based on the observed traffic flows, the performance of the key junctions in the vicinity of the CHRS during the AM, Noon and PM peak hours were assessed. The results are summarised in Table 6.2.1. Figure 6.2.1 shows the peak hour observed traffic flows at key junctions.

Table 6.2.1 Results of Junction Analysis for Background Traffic Flows⁽¹⁾

Junction No.	Junction Name	Junction Type (2)	AM Peak Hour	Noon Peak Hour	PM Peak Hour
J1	Caroline Hill Road / Link Road	Priority / DFC	0.53	0.35	0.59
J2	Caroline Hill Road / Leighton Road	Signal / R.C.	38.9%	56.3%	50.9%
J3	Caroline Hill Road / Leighton Road / Pennington Street	Signal / R.C.	63.8%	48.5%	25.9%
J4	Leighton Road / Tung Lo Wan Road	Signal / R.C.	50.9%	31.8%	31.1%
J5	Eastern Hospital Road / Tung Lo Wan Road / Ka Ning Path	Signal / R.C.	>100%	>100%	>100%
J6	Eastern Hospital Road / Cotton Path	Priority / DFC	0.11	0.11	0.09
J7	Caroline Hill Road / Cotton Path	Priority / DFC	0.11	0.16	0.07
J8	Causeway Road / Moreton Terrace	Signal / R.C.	31.3%	58.7%	48%
J9	Tung Lo Wan Road / Moreton Terrace	Signal / R.C.	64.9%	66.5%	76.4%

Note: (1) Background Traffic in 2016 for J1 to J7 and in 2017 for J8 & J9.

From Table 6.2.1, in term of signal junctions, it can be seen that all junctions are operating in good performance in the AM, Noon and PM peak hours which the reserve capacity (R.C.) is above 25% especially junction 5 (J5 - Eastern Hospital Road / Tung Lo Wan Road / Ka Ning Path), the reserve capacity (R.C.) is currently operating over 100% in peak hours.

In term of priority junctions, it can be seen that all priority junctions (J1 - Caroline Hill Road / Link Road, J6 - Eastern Hospital Road / Cotton Path, J7 - Caroline Hill Road / Cotton Path and J9 - Moreton Terrace / Tung Lo Wan Road) are operating under capacity with Design Flow/Capacity (DFC) Ratios far less than 0.85 in the AM, Noon and PM peak hours. It means that those junctions have significant capacity to cope with additional traffic.

⁽²⁾ The junction performance is expressed in Reserve Capacity (R.C. in %) for signalised junction and Design Flow/ Capacity Ratio (DFC) for priority junction.

6.3 REFERENCE AND DESIGN FLOWS

The Reference Flows for the design years are calculated by using the following formula:

Design Year Reference Flows = 2016 Observed Flows x (1 + growth factor)(design year - 2016)

• For example: 2019 Reference Flows = 2016 Observed Flow x (1 + 0.0054)3

Figures 6.3.1 shows the Reference Flows in 2019.

The Construction Flows for the relevant design years are calculated by using the following formula:

Design Year Design [Construction] Flows = Design year Reference Flows + Traffic generation during construction (demolition period)

• For example: 2019 Design [Construction] Flows = 2019 Reference Flows + Traffic generation during construction (9 pcu/hr in one direction)

Figures 6.3.2 shows the Design [Construction] Flows in 2019 for either to Chai Wan Public Fill Barging Point or to South East New Territories (SENT) Landfill at Tseung Kwan O landfill sites.

6.4 JUNCTION PERFORMANCE ANALYSIS - DESIGN

The junction capacity analysis was undertaken to assess the key junctions in local road network for Reference, and Design (Construction) scenarios in 2016 and 2019 where relevant. The results are summarised in Tables 6.4.1. The detailed calculations are presented in Appendix A.

In design year 2019, the reference background traffic flow for those junctions (both signalised and priority junctions) will operate under the capacity level which the signalised junction R.C. is above 15% and priority junction DFC is below 0.85.

For signalised junctions, the R.C. of signalised junction are in good performance in 2019 either with or without the construction traffic (9 pcu/hr/direction) from the development.

The DFCs of all priority junctions will operate under 0.85 in 2019 either with or without the estimated construction traffic. It indicated that the priority junctions have enough capacity to accommodate additional construction traffic flows to/from the CHRS.

In terms of the construction period may overlap with the St Paul's Hospital Extension, due to the lack of information on the construction traffic routes and number of construction traffic from such St Paul's Hospital Extension site, scenarios of "with" and "without" the construction traffic flows in the study area are included in the analysis. The result are summarised in Table 6.4.2.

The result indicated that all key junctions will operate under the capacity level with the construction traffic of St Paul's Hospital Extension (9 pcu/hr/direction).

Therefore, based on the results of junction performance analysis, it is concluded that all junctions have adequate reserve capacity to accommodate the additional construction traffic generated by the CHRS and the impact to the existing and design year road network is insignificant.

THE DEMOLITION OF EXISTING SUPERSTRUCTURES AT CAROLINE HILL ROAD SITE, CAUSEWAY BAY (PROGRAMME NO. 794CL) - Traffic Impact Assessment (Updated Report)

Table 6.4.1 Junction Performance Analysis – (2019 Reference and Design [Construction] Traffic)

		ICHOII FEIT				ence and D				AND THE REAL PROPERTY OF THE LAND	. Name asserted consistency or the real tables
No.	Junction Name	Junction	Existing ⁽¹⁾			Existing ⁽¹⁾			Existing ⁽¹⁾	201	
		Type ⁽²⁾	(AM)	(AV)	(Noon)	(Noo	n)	(PM)	(PM	<u> </u>
			Reference	Referenc	CHRS	Referenc	Referenc	CHRS	Referenc	Reference	CHRS
				e	C.T.	е	e	C.T.	e		C.T.
					only			only			only
J1	Caroline Hill Road / Link Road	Priority / DFC	0.53	0.54	0.54	0.35	0.35	0.35	0.59	0.60	0.60
J2	Caroline Hill Road / Leighton Road	Signal / R.C.	38.9%	36.8%	36.2%	56.3%	53.7%	52.9%	50.9%	48.6%	47.9%
J3	Caroline Hill Road / Leighton Road / Pennington Street	Signal / R.C.	63.8%	61.2%	59.8%	48.5%	46.3%	46.3%	25.9%	23.9%	23.9%
J4	Leighton Road / Tung Lo Wan Road	Signal / R.C.	50.9%	48.5%	48.1%	31.8%	29.7%	29.4%	31.1%	29%	28.7%
J5	Eastern Hospital Road / Tung Lo Wan Road / Ka Ning Path	Signal / R.C.	>100%	>100%	>100%	>100%	>100%	98.3%	>100%	>100%	>100%
J6	Eastern Hospital Road / Cotton Path	Priority / DFC	0.11	0.11	0.12	0.11	0.11	0.11	0.09	0.09	0.10
J7	Caroline Hill Road / Cotton Path	Priority / DFC	0.11	0.12	0.12	0.16	0.17	0.17	0.07	0.07	0.07
J8	Causeway Road / Moreton Terrace	Signal / R.C.	31.3%	28.4%	27.4%	58.7%	55.3%	53.8%	48%	44.8%	43.4%
J9	Tung Lo Wan Road / Moreton Terrace	Signal / R.C.	64.9%	61.4%	60.5%	66.5%	62.9%	62%	72.6%	74.5%	71.6%

Note: (1) Classified turning movement surveys conducted in 2016 for J1 to J7 and in 2017 for J8 & J9.

⁽²⁾ The junction performance is expressed in Reserve Capacity (R.C. in %) for signalised junction and Design Flow/ Capacity Ratio (DFC) for priority junction.

THE DEMOLITION OF EXISTING SUPERSTRUCTURES AT CAROLINE HILL ROAD SITE, CAUSEWAY BAY (PROGRAMME NO. 794CL) - Traffic Impact Assessment (Updated Report)

Table 6.4.2 Junction Performance Analysis – (2019 Design [Construction] Traffic) without and with St Paul's Hospital Extension

error - Metadococ	Table 6.4.2 Juliculon Periorina	were the second	313 (2013)		ii de	il Haille) W		WALLE OF L	uui 3 1103pi		/11
No.	Junction Name	Junction Type		2019 (AM)			2019 (Noon)			2019 (PM)	
			Reference	CHRS C.T. only	CHRS and St Paul's C.T	Reference	CHRS C.T. only	CHRS and St Paul's C.T	Reference	CHRS C.T. only	CHRS and St Paul's C.T
J1	Caroline Hill Road / Link Road	Priority / DFC	0.54	0.54	0.54	0.35	0.35	0.35	0.60	0.60	0.60
J2	Caroline Hill Road / Leighton Road	Signal / R.C.	36.8%	36.2%	35.5%	53.7%	52.9%	52.2%	48.6%	47.9%	47.2%
J3	Caroline Hill Road / Leighton Road / Pennington Street	Signal / R.C.	61.2%	59.8%	58.4%	46.3%	46.3%	46.3%	23.9%	23.9%	23.9%
J4	Leighton Road / Tung Lo Wan Road	Signal / R.C.	48.5%	48.1%	47.7%	29.7%	29.4%	29.1%	29%	28.7%	28.5%
J5	Eastern Hospital Road / Tung Lo Wan Road / Ka Ning Path	Signal / R.C.	>100%	>100%	>100%	>100%	98.3%	95.1%	>100%	>100%	>100%
J6	Eastern Hospital Road / Cotton Path	Priority / DFC	0.11	0.12	0.13	0.11	0.11	0.12	0.09	0.10	0.11
J7	Caroline Hill Road / Cotton Path	Priority / DFC	0.12	0.12	0.12	0.17	0.17	0.17	0.07	0.07	0.07
J8	Causeway Road / Moreton Terrace	Signal / R.C.	28.4%	27.4%	26.3%	55.3 %	53.8%	52.3%	44.8%	43.4%	42.1%
J9	Tung Lo Wan Road / Moreton Terrace	Signal / R.C.	61.4%	60.5%	59.9%	62.9%	62.0%	61.1%	72.6%	71.6%	70.7%

7 TRAFFIC ARRANGEMENT DURING SPEICAL EVENTS IN HONG KONG STADIUM

Hong Kong Stadium is the major location to held major sport events, such as World Rugby Sevens annually. Temporary traffic arrangement including traffic division and temporary road closure will be implemented by the Hong Kong Police / Transport Department.

The CHRS is located near the Hong Kong Stadium and the Caroline Hill Road is the main corridor for both pedestrian and vehicular to access the Hong Kong Stadium during the major sport events.

The project coordinator / the awarded contractor will work closely with the Hong Kong Police / Transport Department prior any events in Hong Kong Stadium to determent the construction traffic situation on the event day(s) and proposed the feasible temporary traffic arrangement to Transport Department for endorsement. The feasible temporary traffic arrangement including, but not limited to, restricted the number of construction traffic inbound and outbound during the sport events period. The awarded contractor will also prepare to provide assistant for the implement any temporary traffic and crowd control measures as request by the government authorities.

8 CONCLUSIONS

The Government targets to make available the existing Superstructures at Caroline Hill Road Site (CHRS) located the junction of Leighton Road and Caroline Hill Road in Causeway Bay for future development. The site covers an area of about 26,300m².

The demolition works are targeted to commence in the 2nd quarter of 2018 for completion in the 3rd quarter of 2019. For conservative purpose, the design year of the traffic forecast is set in year 2019.

The purpose of the TIA report is to conduct traffic surveys and determine the adverse traffic impact caused by the above demolition project during demolition period on the adjacent road networks.

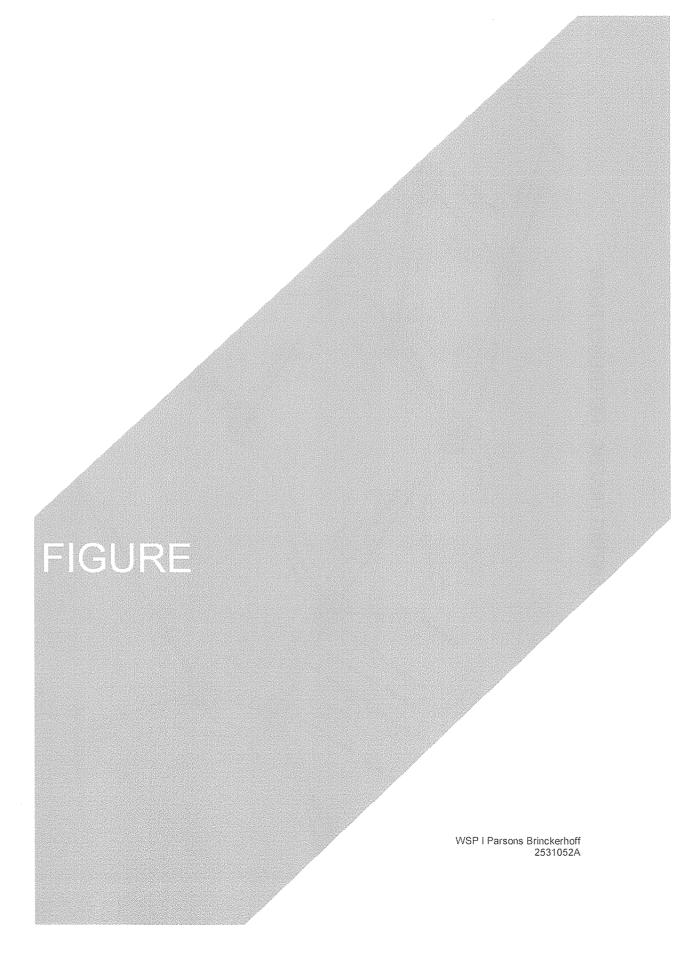
From the observed vehicular traffic count survey, the morning, noon and evening peak hours were identified as 8:15am – 9:15am, 12:00noon – 1:00pm and 5:30pm – 6:30pm respectively.

Linear regression analysis was applied to the latest five years of AADT data, including the estimated values, to obtain an annual growth factor for the study area. The calculated weighted average annual growth rate of the traffic volume is +0.54% between year 2011 and 2015 and +1.10% between 2012 and 2016. Reference was also made to the 2011-based Territorial Population and Employment Data Matrices (TPEDM) land use data. The TPEDM data have been adopted and the data should have included the most up-to-date development planning in the vicinity. For the purpose of the study, an overall growth factor of +0.54% per annum for J1 to J7 and +1.10% per annum for J8 and J9 are adopted for the projection of background traffic in design year.

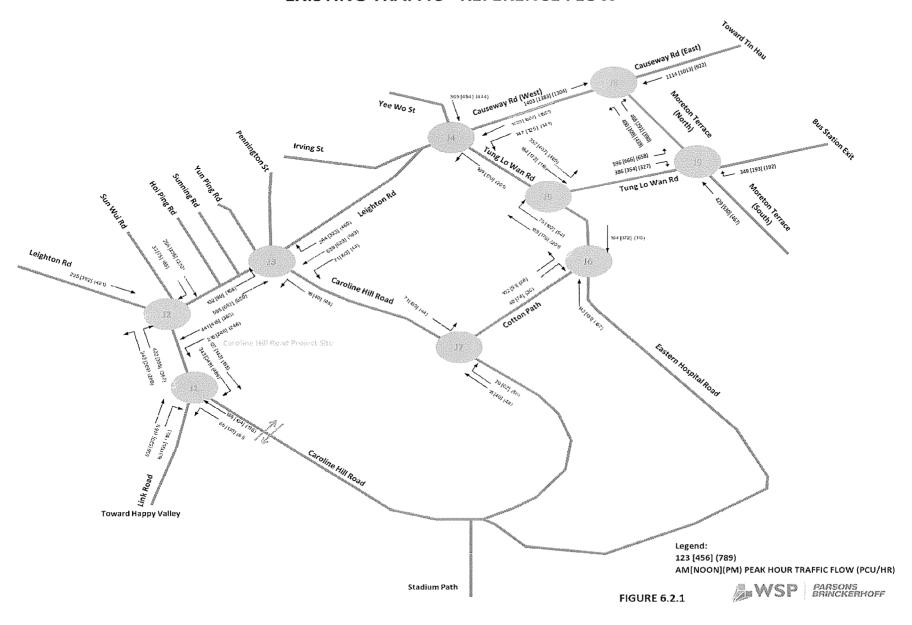
With reference to the information provided by ArchSD, based on the estimate demolition waste, it is estimated that the construction activities will generate and attract 24 trips of construction truck per day for each direction. Considering 8 working hours per day and pcu factor of 3 for construction truck, it is estimated that 9 pcu/hr/direction will be generated during peak hours in the demolition peak period.

In design year 2019, the reference background traffic flow for those junctions (both signalised and priority junctions) will operate under the capacity level which the signalised junction R.C. is above 15% and priority junction DFC is below 0.85.

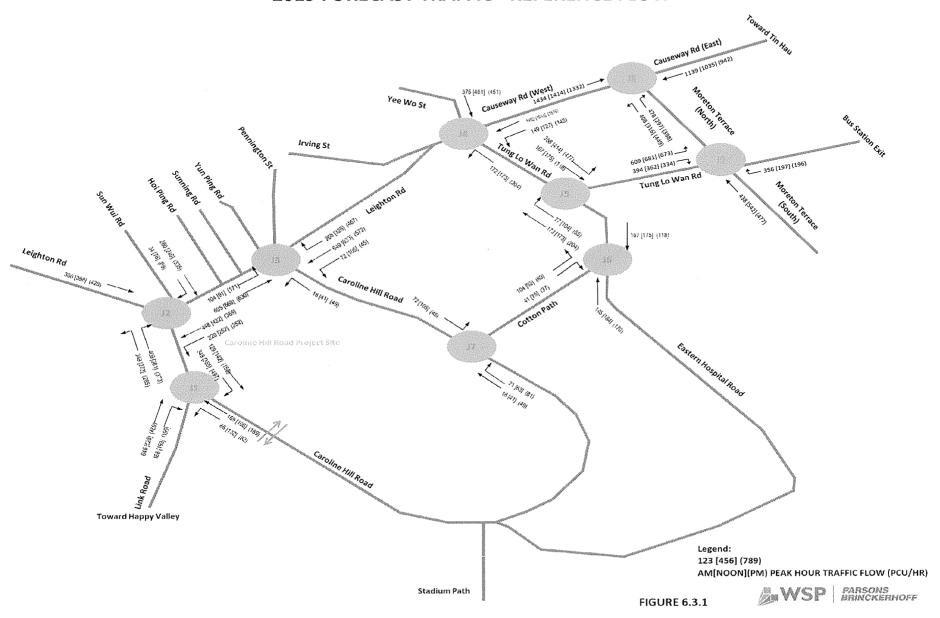
For signalised junctions, the R.C. of signalised junction are in good performance in 2019 either with or without the construction traffic (9 pcu/hr/direction) from the development.

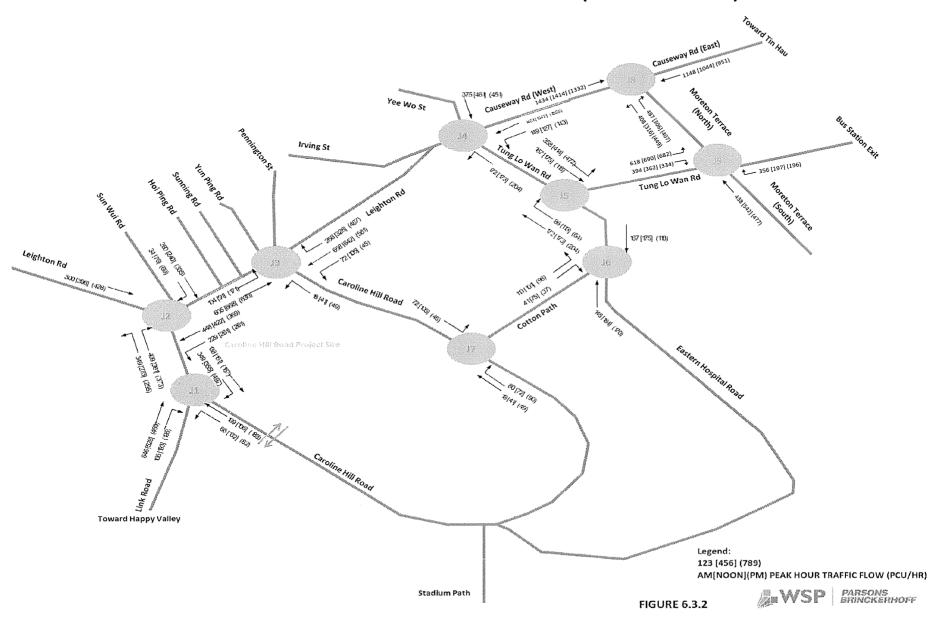

The DFCs of all priority junctions will operate under 0.85 in 2019 either with or without the estimated construction traffic. It indicated that the priority junctions have enough capacity to accommodate additional construction traffic flows to/from the CHRS.

In terms of the construction period may overlap with the St Paul's Hospital Extension, due to the lack of information on the construction traffic routes and number of construction traffic from such St Paul's Hospital Extension site, scenarios of "with" and "without" the construction traffic flows in the study area are included in the analysis.


The trip generation/attraction of the construction traffic from St Paul's Hospital Extension and the construction traffic route are assumed to be the same as CHRS.

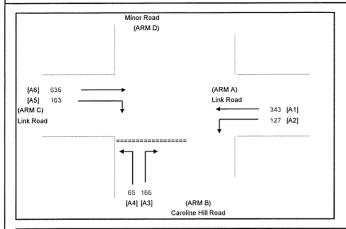
The result indicated that all key junctions will operate under the capacity level with the construction traffic of St Paul's Hospital Extension (9 pcu/hr/direction)


Therefore, based on the results of junction performance analysis, it is concluded that all junctions have adequate reserve capacity to accommodate the additional construction traffic generated by the CHRS and the impact to the existing and design year road network is insignificant.


EXISTING TRAFFIC - REFERENCE FLOW

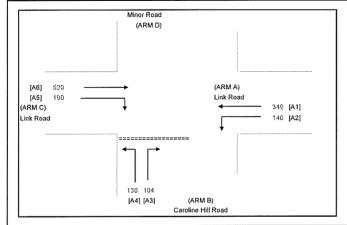
2019 FORECAST TRAFFIC - REFERENCE FLOW


2019 FORECAST TRAFFIC - DESIGN FLOW (CONSTRUCTION)


APPENDIX A

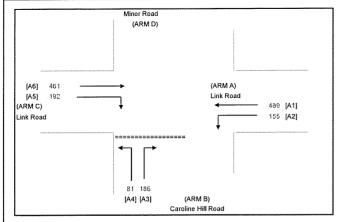
CALCULATION SHEET FOR JUNCTION PERFORMANCE

WSP I Parsons Brinckerhoff 2531052A


	TRAFFIC SIGNAL	CALCULATION			INITIALS	DATE
Demolition of Existing Superstructure at Caroline H	ill Road Site - Traffic Impact Assesment	PROJECT NO.:	2531052A	PREPARED BY:	км	Nov-16
J1 - Link Road / Caroline Hill Road	Reference Flow - 2016 EXISTING	TRAFFIC (AM)		CHECKED BY:	AL	Nov-16
				REVIEWED BY:	cw	Nov-16

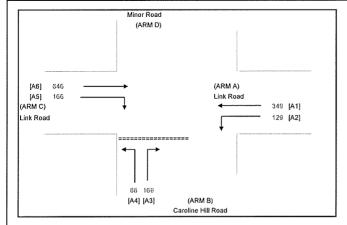
OTES: (GE	OMET	RIC INPUT DATA)	
W	=	MAJOR ROAD WIDTH	
W cr	=	CENTRAL RESERVE WIDTH	
W b-a	=	LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-a	
W b-c	=	LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-c	
W c-b	=	LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM c-b	
VI b-a	=	VISIBILITY TO THE LEFT FOR VEHICLES WAITING IN STREAM b-a	
Vr b-a	=	VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a	
Vr b-c	=	VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c	
Vr c-b	=	VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM c-b	
Хa	=	STREAM-SPECIFIC (RIGHT TURN FROM A)	
Хb	=	STREAM-SPECIFIC (RIGHT TURN FROM B)	
Zb	=	STREAM-SPECIFIC (LEFT TURN FROM B)	
M b	=	STREAM-SPECIFIC (STRAIGHT AHEAD FROM B - LEFT LANE)	
Y	=	(1-0.0345W)	
r b-a	=	RATIO OF FLOW TO CAPACITY IN STREAM b-a	

GEOMETRIC	DETAILS:					GEOMETRIC FACTORS :						COMPARISION OF DESIGN TO CAPACITY:	FLOV	V
GENERAL						D =	0.839		Zb	==	1,154			
w =	7.30	(metres)				E =	0.836		Χd	=	0.533	DFC b-a	=	0.5270
W cr =	1.5	(metres)	Y =	0.748		F =	0.905		Zd	=	0.586	DFC b-c	=	0.0899
						M b ≃	0.839		M d	=	0,533	DFC c-b	=	0.3472
MAJOR ROAL	O (ARM A)		MAJOR ROAL	D (ARM C)								DFCI b-d	=	0.000.0
W a-c =	3,65	(metres)	W c-b =	2,60	(metres)	PROPORTIO	ON OF MIN	NOR STRAIG	HT AHEAD TRAF	FIC :		DFCr b-d	=	0.000.0
VIa-c =	200	(metres)	Vr c-b =	40	(metres)							DFC d-c	=	0.0000
qa-b =	100	(pcu/hr)	q c-a =	600	(pcu/hr)	rb-a =	0.9222		r d-c	=	0.000	DFC d-a	=	0.000
qa-c =	300	(pcu/hr)	q c-b =	200	(pcu/hr)	ql b-d =	0	(pcu/hr)	ql d-b	=	0 (pcu/hr)	DFC a-d	=	0.000
						qrb-d =	0	(pcu/hr)	qr d-b	=	0 (pcu/hr)	DFCI d-b	=	0.000
												DFCr d-b	=	0.000
MINOR ROAD	(ARM B)		MINOR ROAD	(ARM D)		CAPACITY	OF MOVE	MENT:						
W b-a =	3.00	(metres)	W d-c =		(metres)									
W b-c =	3.00	(metres)	W d-a =		(metres)	Q b-a =	315	(pcu/hr)	Q d-c	=	180 (pcu/hr)			
VIb-a =	29	(metres)	VId-c =		(metres)	Q b-c =	723	(pcu/hr)	Q d-a	=	341 (pcu/hr)			
Vrb-a =	80	(metres)	Vrd-c =		(metres)	Q c-b =	576	(pcu/hr)	Q a-d	=	581 (pcu/hr)	CRITICAL DFC	=	0.53
Vrb-c =	30	(metres)	Vrd-a =		(metres)	QIb-d =	315	(pcu/hr)	QI d-b	=	193 (pcu/hr)			
q b-a =	166	(pcu/hr)	q d-c =		(pcu/hr)	Qrb-d =	315	(pcu/hr)	Qr d-b	=	193 (pcu/hr)			
q b-c =	65	(pcu/hr)	q d-a =		(pcu/hr)						•			
q b-d =		(pcu/hr)	q d-b =		(pcu/hr)	TOT	AL FLOW	=	1431 (PCU/HR)					


	TRAFFIC SIGNAL	CALCULATION			INITIALS	DATE
Demolition of Existing Superstructure at Caroline Hill	Road Site - Traffic Impact Assesment	PROJECT NO.:	2531052A	PREPARED BY:	KM	Nov-16
J1 - Link Road / Caroline Hill Road	Reference Flow - 2016 EXISTING	TRAFFIC (Noon)		CHECKED BY:	AL	Nov-16
				REVIEWED BY:	cw	Nov-16

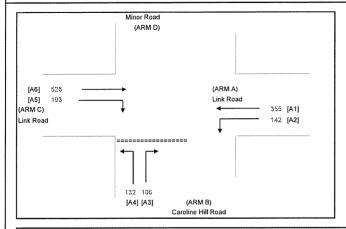
OTES: (G	EOMET	TRIC INPUT DATA)	
W	=	MAJOR ROAD WIDTH	
W cr	=	CENTRAL RESERVE WIDTH	
W b-a	=	LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-a	
Wb-c	=	LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-c	
W c-b	=	LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM c-b	
VI b-a	=	VISIBILITY TO THE LEFT FOR VEHICLES WAITING IN STREAM b-a	
Vr b-a	=	VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a	
Vr b-c	=	VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c	
Vr c-b	=	VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM c-b	
Ха	=	STREAM-SPECIFIC (RIGHT TURN FROM A)	
Хb	=	STREAM-SPECIFIC (RIGHT TURN FROM B)	
Ζb	=	STREAM-SPECIFIC (LEFT TURN FROM B)	
M b	=	STREAM-SPECIFIC (STRAIGHT AHEAD FROM B - LEFT LANE)	
Y	=	(1-0.0345W)	
r b-a	=	RATIO OF FLOW TO CAPACITY IN STREAM b-a	

GEOMETRIC I	DETAILS:					GEOMETR	IC FACTOR	₹\$:				COMPARISION OF DESIGN TO CAPACITY:	FLOW	ı
GENERAL						D =	0.839		Zb	=,	1.154			
w =	7.30	(metres)				E =	0.836		Χd	=	0.533	DFC b-a	=	0.3302
Wcr =	1.5	(metres)	Y =	0.748		F =	0.905		Ζd	=	0.586	DFC b-c	=	0.1798
						M b =	0.839		Md	=	0.533	DFC c-b	=	0.3472
MAJOR ROAD	(ARM A)		MAJOR ROAE	(ARM C)								DFCI b-d	=	0.0000
W a-c =	3.65	(metres)	W c-b =	2.60	(metres)	PROPORT	ION OF MI	NOR STRAIG	HT AHEAD TRAF	FIC:		DFCr b-d	=	0.000
VI a-c =	200	(metres)	Vr c-b =	40	(metres)							DFC d-c	=	0.0000
qa-b =	100	(pcu/hr)	q c-a =	600	(pcu/hr)	rb-a ≔	0.5909		r d-c	=	0.000	DFC d-a	=	0.0000
qa-c =	300	(pcu/hr)	q c-b =	200	(pcu/hr)	ql b-d =	0	(pcu/hr)	ql d-b	=	0 (pcu/hr)	DFC a-d	=	0.0000
						qrb-d =	0	(pcu/hr)	qr d-b	=	0 (pcu/hr)	DFCI d-b	=	0.0000
												DFCr d-b	=	0.0000
MINOR ROAD	(ARM B)		MINOR ROAD	(ARM D)		CAPACITY	OF MOVE	MENT:						
W b-a =	3.00	(metres)	W d-c =		(metres)									
W b-c =	3,00	(metres)	W d-a =		(metres)	Q b-a =	315	(pcu/hr)	Q d-c	=	176 (pcu/hr)			
VI b-a =	29	(metres)	VId-c =		(metres)	Q b-c =	723	(pcu/hr)	Q d-a	=	341 (pcu/hr)			
Vr b-a =	80	(metres)	Vrd-c =		(metres)	Q c-b =	576	(pcu/hr)	Q a-d	=	581 (pcu/hr)	CRITICAL DFC	=	0.35
Vr b-c =	30	(metres)	Vrd-a =		(metres)	Ql b-d =	315	(pcu/hr)	Ql d-b	=	193 (pcu/hr)			
q b-a =	104	(pcu/hr)	q d-c =		(pcu/hr)	Qr b-d =	315	(pcu/hr)	Qr d-b	=	193 (pcu/hr)			
q b-c =	130	(pcu/hr)	q d-a =		(pcu/hr)									
q b-d =		(pcu/hr)	q d-b =		(pcu/hr)	TO'	TAL FLOW	=	1434 (PCU/HR)				


	TRAFFIC SIGNAL	CALCULATION			INITIALS	DATE
Demolition of Existing Superstructure at Caroline H	ill Road Site - Traffic Impact Assesment	PROJECT NO.:	2531052A	PREPARED BY:	KM	Nov-16
J1 - Link Road / Caroline Hill Road	Reference Flow - 2016 EXISTING	TRAFFIC (PM)		CHECKED BY:	AL	Nov-16
				REVIEWED BY:	cw	Nov-16

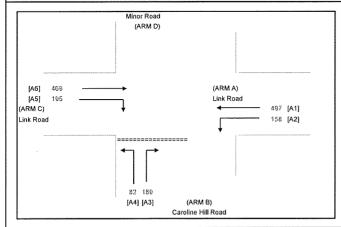
NOTES: (GEO	METR	RIC INPUT DATA)
w		=	MAJOR ROAD WIDTH
Wo	er :	=	CENTRAL RESERVE WIDTH
Wt	o-a :	=	LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-a
W	о-с :	=	LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-c
We	р-b :	=	LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM c-b
VIE)-a :	=	VISIBILITY TO THE LEFT FOR VEHICLES WAITING IN STREAM b-a
Vr t	o-a :	=	VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a
Vr I	b-c :	=	VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c
Vro	c-b :	=	VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM c-b
Х	а :	=	STREAM-SPECIFIC (RIGHT TURN FROM A)
Х	b :	=	STREAM-SPECIFIC (RIGHT TURN FROM B)
Z	b :	=	STREAM-SPECIFIC (LEFT TURN FROM B)
M	b :	=	STREAM-SPECIFIC (STRAIGHT AHEAD FROM B - LEFT LANE)
Y	, :	=	(1-0.0345W)
r b-a		=	RATIO OF FLOW TO CAPACITY IN STREAM b-a

GEOMETRIC	DETAILS:					GEOMETRIC FACTORS:						COMPARISION OF DESIGN TO CAPACITY:	FLOW	ı
GENERAL						D =	0.839	9	Zb	=	1.154			
w =	7.30	(metres)				E =	0.836	5	X d	=	0.533	DFC b-a	=	0.5905
Wcr =	1.5	(metres)	Y =	0.748		F =	0.90	5	Zd	=	0.586	DFC b-c	=	0.1120
						Mb =	0.839	9	Mid	=	0.533	DFC c-b	=	0,3472
MAJOR ROAL	D (ARM A)		MAJOR ROAL	D (ARM C)								DFCI b-d	=	0.0000
W a-c =	3.65	(metres)	W c-b =	2.60	(metres)	PROPOR	TION OF M	INOR STRAIG	SHT AHEAD TRAF	FIC :		DFCr b-d	=	0.0000
VI a-c =	200	(metres)	At c-p =	40	(metres)							DFC d-c	=	0.0000
qa-b =	100	(pcu/hr)	q c-a =	600	(pcu/hr)	rb-a =	1.0508		r d-c	=	0.000	DFC d-a	=	0.000,0
qa-c =	300	(pcu/hr)	q c-b =	200	(pcu/hr)	qlb-d =	0	(pcu/hr)	ql d-b	=	0 (pcu/hr)	DFC a-d	=	0.0000
						qrb-d =	0	(pcu/hr)	qr d-b	=	0 (pcu/hr)	DFCI d-b	=	0.0000
												DFCr d-b	=	0.0000
MINOR ROAD	NOR ROAD (ARM B) MINOR ROAD (ARM D)					CAPACIT	Y OF MOV	EMENT:						
W b-a =	3.00	(metres)	W d-c =		(metres)									
W b-c =	3.00	(metres)	W d-a =		(metres)	Q b-a =	315	(pcu/hr)	Q d-c	=	177 (pcu/hr)			
VI b-a =	29	(metres)	VI d-c =		(metres)	Q b-c =	723	(pcu/hr)	Q d-a	=	341 (pcu/hr)			
Vrb-a ≃	80	(metres)	Vr d-c =		(metres)	Q c-b =	576	(pcu/hr)	Q a-d	=	581 (pcu/hr)	CRITICAL DFC	=	0.59
Vrb-c =	30	(metres)	Vrd-a =		(metres)	QI b-d =	315	5 (pcu/hr)	QI d-b	=	193 (pcu/hr)			
q b-a =	186	(pcu/hr)	q d-c =		(pcu/hr)	Qr b-d =	315	5 (pcu/hr)	Qr d-b	=	193 (pcu/hr)			
q b-c =	81	(pcu/hr)	q d-a =		(pcu/hr)									
q b-d =		(pcu/hr)	q d-b =		(pcu/hr)	TC	TAL FLOV	V =	1467 (PCU/HR)	1				


	TRAFFIC SIGNAL	CALCULATION			INITIALS	DATE
Demolition of Existing Superstructure at Caroline Hill Ro	ad Site - Traffic Impact Assesment	PROJECT NO.:	2531052A	PREPARED BY:	КМ	Nov-16
J1 - Link Road / Caroline Hill Road	Reference Flow - 2019 FORECAS	T TRAFFIC (AM)		CHECKED BY:	AL	Nov-16
				REVIEWED BY:	cw	Nov-16

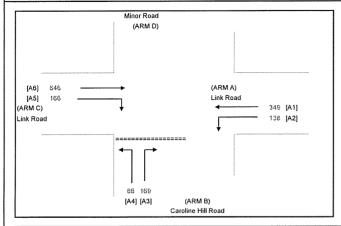
NOTES: (GE	OMET	RIC INPUT DATA)	
w	=	MAJOR ROAD WIDTH	
Wcr	=	CENTRAL RESERVE WIDTH	
W b-a	=	LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-a	
W b-c	=	LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-c	
W c-b	=	LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM c-b	
VI b-a	=	VISIBILITY TO THE LEFT FOR VEHICLES WAITING IN STREAM b-a	
Vr b-a	=	VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a	
Vr b-c	=	VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c	
Vr c-b	=	VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM c-b	
Хa	=	STREAM-SPECIFIC (RIGHT TURN FROM A)	
Хb	=	STREAM-SPECIFIC (RIGHT TURN FROM B)	
Ζb	=	STREAM-SPECIFIC (LEFT TURN FROM B)	
Мb	=	STREAM-SPECIFIC (STRAIGHT AHEAD FROM B - LEFT LANE)	
Y	=	(1-0.0345W)	
r b-a	=	RATIO OF FLOW TO CAPACITY IN STREAM b-a	

GEOMETRIC	DETAILS:					GEOMETR	IC FACTO	RS:				COMPARISION OF DESIGN TO CAPACITY:	FLOW	1
GENERAL						D =	0.839		Zb	=	1.154			
w =	7.30	(metres)				E =	0.836		X d	=	0.533	DFC b-a	=	0.5365
W cr =	1.5	(metres)	Y =	0.748		F =	0.905		Zd	=	0.586	DFC b-c	==	0.0913
						M b =	0.839		Mid	=	0,533	DFC c-b	=	0.3472
MAJOR ROAL	D (ARM A)		MAJOR ROAL	O (ARM C)								DFCI b-d	=	0.0000
W a-c ≃	3.65	(metres)	W c-b =	2.60	(metres)	PROPORT	ION OF MI	NOR STRAIG	HT AHEAD TRAF	FIC :		DFCr b-d	=	0.0000
VI a-c =	200	(metres)	Vr c-b =	40	(metres)							DFC d-c	=	0.0000
q a-b =	100	(pcu/hr)	q c-a =	600	(pcu/hr)	rb-a ≔	0.9389		r d-c	=	0.000	DFC d-a	=	0.0000
qa-c =	300	(pcu/hr)	q c-b =	200	(pcu/hr)	ql b-d =	0	(pcu/hr)	ql d-b	=	0 (pcu/hr)	DFC a-d	=	0.0000
						qrb-d =	0	(pcu/hr)	qr d-b	=	0 (pcu/hr)	DFCI d-b	=	0.0000
												DFCr d-b	=	0.000
MINOR ROAD	(ARM B)		MINOR ROAD	(ARM D)		CAPACITY	OF MOVE	MENT:						
W b-a =	3.00	(metres)	W d-c =		(metres)									
W b-c =	3.00	(metres)	W d-a =		(metres)	Q b-a =	315	(pcu/hr)	Q d-c	=	189 (pcu/hr)			
VIb-a =	29	(metres)	VI d-c =		(metres)	Q b-c =	723	(pcu/hr)	Q d-a	=	341 (pcu/hr)			
Vr b-a =	80	(metres)	Vr d-c =		(metres)	Q c-b =	576	(pcu/hr)	Q a-d	=	581 (pcu/hr)	CRITICAL DFC	=	0.54
Vrb-c =	30	(metres)	Vrd-a ≔		(metres)	QI b-d =	315	(pcu/hr)	Ql d-b	=	193 (pcu/hr)			
q b-a =	169	(pcu/hr)	q d-c =		(pcu/hr)	Qr b-d =	315	(pcu/hr)	Qr d-b	=	193 (pcu/hr)			
q b-c =	66	(pcu/hr)	q d-a =		(pcu/hr)									
q b-d =		(pcu/hr)	q d-b =		(pcu/hr)	TO [*]	TAL FLOW	=	1435 (PCU/HR))				


	TRAFFIC SIGNAL	CALCULATION		INITIALS	DATE
Demolition of Existing Superstructure at Caroline Hill	Road Site - Traffic Impact Assesment	PROJECT NO.: 2531052/	A PREPARED BY:	KM	Nov-16
J1 - Link Road / Caroline Hill Road	Reference Flow - 2019 FORECAS	ST TRAFFIC (Noon)	CHECKED BY:	AL	Nov-16
			REVIEWED BY:	cw	Nov-16

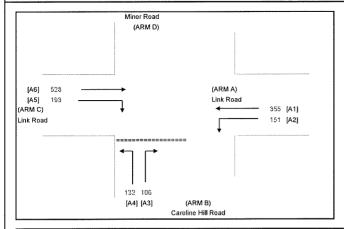
S: (GE	OMET	TRIC INPUT DATA)	
W	=	MAJOR ROAD WIDTH	
Wcr	=	CENTRAL RESERVE WIDTH	
Wb-a	=	LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-a	
Wb-c	=	LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-c	
W c-b	=	LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM C-D	
VI b-a	=	VISIBILITY TO THE LEFT FOR VEHICLES WAITING IN STREAM b-a	
Vr b-a	=	VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a	
Vr b-c	=	VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c	
Vr c-b	=	VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM c-b	
Ха	=	STREAM-SPECIFIC (RIGHT TURN FROM A)	
Хb	=	STREAM-SPECIFIC (RIGHT TURN FROM B)	
Ζb	=	STREAM-SPECIFIC (LEFT TURN FROM B)	
Мb	=	STREAM-SPECIFIC (STRAIGHT AHEAD FROM B - LEFT LANE)	
Υ	=	(1-0.0345W)	
r b-a	=	RATIO OF FLOW TO CAPACITY IN STREAM b-a	

GEOMETRIC I	DETAILS:					GEOMETR	IC FACTOR	RS:				COMPARISION OF DESIGN TO CAPACITY:	FLOW	V
GENERAL						D =	0.839		Zb	=	1.154			
w =	7,30	(metres)				E =	0.836		Χd	=	0.533	DFC b-a	=	0.3365
W cr =	1.5	(metres)	Y =	0.748		F =	0.905		Zd	=	0.586	DFC b-c	=	0.1826
						M b =	0.839		M d	=	0.533	DFC c-b	=	0.3472
MAJOR ROAD	(ARM A)		MAJOR ROAL	(ARM C)								DFCI b-d	=	0.000
W a-c =	3,65	(metres)	W c-b =	2.60	(metres)	PROPORTI	ON OF MIN	OR STRAIG	SHT AHEAD TRAF	FIC :		DFCr b-d	=	0.000
VI a-c =	200	(metres)	Vrc-b =	40	(metres)							DFC d-c	=	0.0000
qa-b =	100	(pcu/hr)	q c-a =	600	(pcu/hr)	rb-a =	0.6057		r d-c	=	0.000	DFC d-a	=	0.000
qa-c =	300	(pcu/hr)	q c-b =	200	(pcu/hr)	qlb-d =	0	(pcu/hr)	ql d-b	==	0 (pcu/hr)	DFC a-d	=	0.000
						grb-d =	0	(pcu/hr)	gr d-b	=	0 (pcu/hr)	DFCI d-b	=	0.0000
						·		, ,	•		" ,	DFCr d-b	=	0.0000
MINOR ROAD	(ARM B)		MINOR ROAD	(ARM D)		CAPACITY	OF MOVE	MENT:						
W b-a =	3.00	(metres)	W d-c =	. ,	(metres)									
W b-c =	3,00	(metres)	W d-a =		(metres)	Q b-a =	315	(pcu/hr)	Q d-c	=	175 (pcu/hr)			
VIb-a =	29	(metres)	VId-c =		(metres)	Q b-c =	723	(pcu/hr)	Q d-a	=	341 (pcu/hr)			
Vr b-a =	80	(metres)	Vrd-c =		(metres)	Q c-b =	576	(pcu/hr)	Q a-d	=	581 (pcu/hr)	CRITICAL DFC	=	0.35
Vrb-c =	80	(metres)	Vrd-a ≃		(metres)	QIb-d =	315	(pcu/hr)	Ql d-b	=	193 (pcu/hr)			
q b-a =	106	(pcu/hr)	q d-c =		(pcu/hr)	Qr b-d =	315	(pcu/hr)	Qr d-b	=	193 (pcu/hr)			
a b-c =	132	(pcu/hr)	q d-a =		(pcu/hr)									
q b-d =		(pcu/hr)	q d-b =		(pcu/hr)	TOT	AL FLOW	=	1438 (PCU/HR)					


	TRAFFIC SIGNAL	CALCULATION			INITIALS	DATE
Demolition of Existing Superstructure at Caroline Hi	Il Road Site - Traffic Impact Assesment	PROJECT NO.:	2531052A	PREPARED BY:	KM	Nov-16
J1 - Link Road / Caroline Hill Road	Reference Flow - 2019 FORECAS	T TRAFFIC (PM)		CHECKED BY:	AL.	Nov-16
				REVIEWED BY:	cw	Nov-16

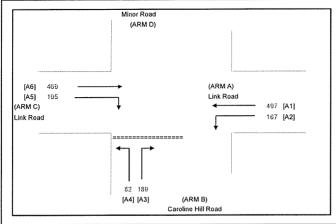
; (GE	OMETI	RIC INPUT DATA)	
W	=	MAJOR ROAD WIDTH	
W cr	=	CENTRAL RESERVE WIDTH	
W b-a	=	LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-a	
Wb-c	=	LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-c	
W c-b	=	LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM c-b	
VI b-a	=	VISIBILITY TO THE LEFT FOR VEHICLES WAITING IN STREAM b-a	
Vr b-a	=	VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a	
Vr b-c	=	VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c	
Vr c-b	=	VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM C-b	
Хa	=	STREAM-SPECIFIC (RIGHT TURN FROM A)	
Хb	=	STREAM-SPECIFIC (RIGHT TURN FROM B)	
Ζb	=	STREAM-SPECIFIC (LEFT TURN FROM B)	
Мb	=	STREAM-SPECIFIC (STRAIGHT AHEAD FROM B - LEFT LANE)	
Υ	=	(1-0.0345W)	
r b-a	=	RATIO OF FLOW TO CAPACITY IN STREAM b-a	

GEOMETRIC D	ETAILS:					GEOMETR	IC FACTOR	RS:				COMPARISION OF DESIGN TO CAPACITY:	FLOW	ı
GENERAL						D =	0.839		Zb	=	1.154			
w =	7.30	(metres)				E =	0.836		Χd	=	0.533	DFC b-a	=	0.6000
Wcr =	1.5	(metres)	Υ =	0.748		F =	0.905		Zd	=	0.586	DFC b-c	=	0.1134
						M b =	0.839		Md	=	0.533	DFC c-b	=	0.3472
MAJOR ROAD	(ARM A)		MAJOR ROAD	(ARM C)								DFCI b-d	=	0.0000
W a-c =	3,65	(metres)	W c-b =	2.60	(metres)	PROPORTI	ON OF MIN	IOR STRAIG	HT AHEAD TRAF	FIC :		DFCr b-d	=	0.0000
VI a-c =	200	(metres)	Vr c-b =	40	(metres)							DFC d-c	=	0.0000
qa-b =	100	(pcu/hr)	q c-a =	600	(pcu/hr)	rb-a ≕	1.0739		r d-c	=	0.000	DFC d-a	=	0.000
qa-c =	300	(pcu/hr)	q c-b =	200	(pcu/hr)	qlb-d =	0	(pcu/hr)	ql d-b	=	0 (pcu/hr)	DFC a-d	=	0.0000
•		" ,	·			grb-d ≃	0	(pcu/hr)	ar d-b	=	0 (pcu/hr)	DFCI d-b	=	0.0000
						•		" /	•		,, ,	DFCr d-b	=	0.0000
MINOR ROAD	(ARM B)		MINOR ROAD	(ARM D)		CAPACITY	OF MOVE	MENT:						
W b-a =	3.00	(metres)	W d-c =	, ,	(metres)									
W b-c =	3.00	(metres)	W d-a =		(metres)	Q b-a =	315	(pcu/hr)	Q d-c	=	176 (pcu/hr)			
VI b-a =	29	(metres)	VId-c =		(metres)	Q b-c =	723	(pcu/hr)	Q d-a	=	341 (pcu/hr)			
Vr b-a =	80	(metres)	Vrd-c =		(metres)	Q c-b =	576	(pcu/hr)	Q a-d	=	581 (pcu/hr)	CRITICAL DFC	=	0.60
Vr b-c =	80	(metres)	Vrd-a =		(metres)	QIb-d =	315	(pcu/hr)	QI d-b	=	193 (pcu/hr)			
g b-a =	189	(pcu/hr)	q d-c =		(pcu/hr)	Qrb-d =	315	(pcu/hr)	Qr d-b	=	193 (pcu/hr)			
q b-c =	82	(pcu/hr)	q d-a =		(pcu/hr)									
q b-d =		(pcu/hr)	q d-b =		(pcu/hr)	TO	TAL FLOW	=	1471 (PCU/HR))				

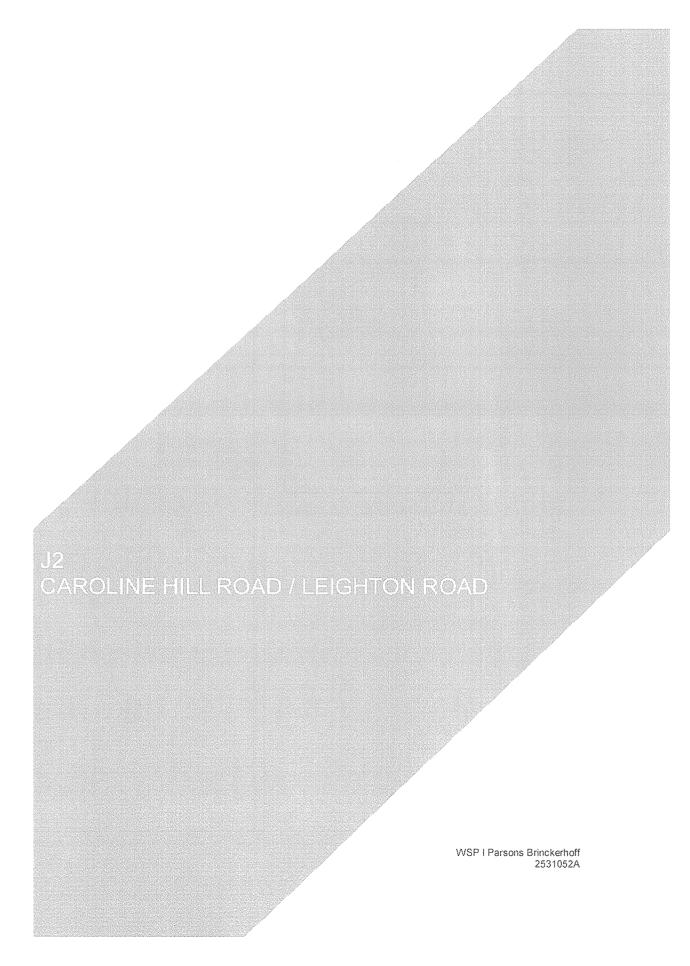

	TRAFFIC SIGNAL	CALCULATION		INITIALS	DATE
Demolition of Existing Superstructure at Caroline Hi	Il Road Site - Traffic Impact Assesment	PROJECT NO.: 2531052A	PREPARED BY:	KM	Nov-16
J1 - Link Road / Caroline Hill Road	Design Flow (Construction) - 2019	FORECAST TRAFFIC (AM)	CHECKED BY:	AL	Nov-16
			REVIEWED BY:	cw	Nov-16

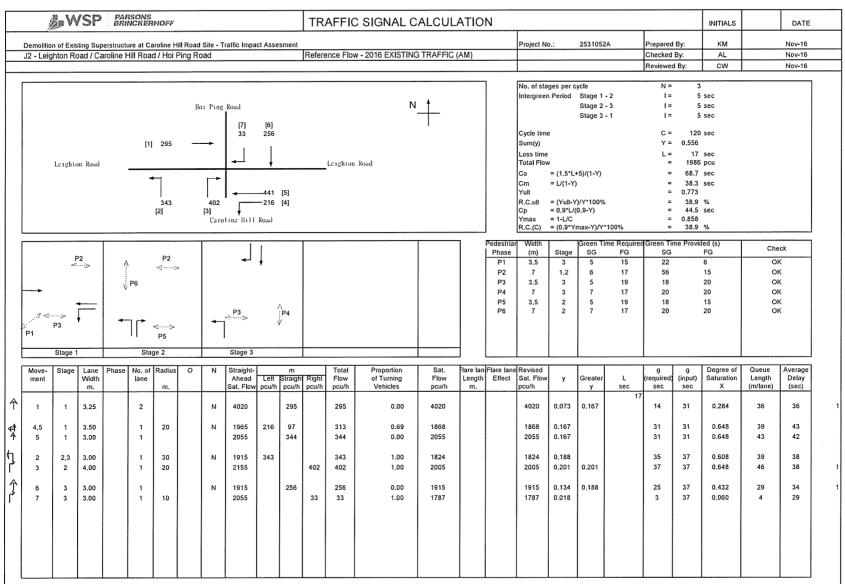
S: (GE	OMETI	RIC INPUT DATA)	
W	=	MAJOR ROAD WIDTH	
Wcг	=	CENTRAL RESERVE WIDTH	
W b-a	=	LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-a	
Wb-c	=	LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-c	
W c-b	=	LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM c-b	
VI b-a	=	VISIBILITY TO THE LEFT FOR VEHICLES WAITING IN STREAM b-a	
Vr b-a	=	VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a	
Vr b-c	=	VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c	
Vr c-b	=	VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM c-b	
Хa	=	STREAM-SPECIFIC (RIGHT TURN FROM A)	
Хb	=	STREAM-SPECIFIC (RIGHT TURN FROM B)	
Ζb	=	STREAM-SPECIFIC (LEFT TURN FROM B)	
Мb	=	STREAM-SPECIFIC (STRAIGHT AHEAD FROM B - LEFT LANE)	
Υ	=	(1-0.0345W)	
r b-a	=	RATIO OF FLOW TO CAPACITY IN STREAM b-a	

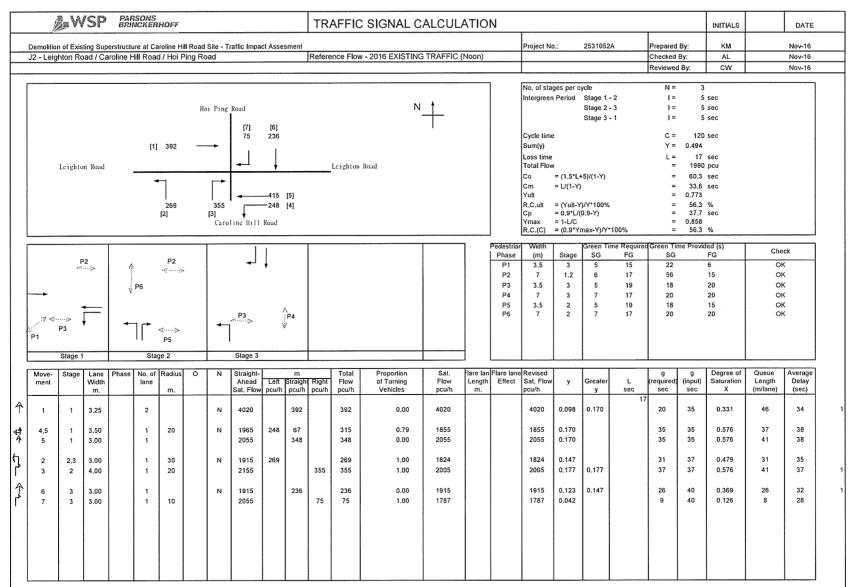
GEOMETRIC	DETAILS:					GEOMETRIC	C FACTOR	₹\$:				COMPARISION OF TO CAPACITY:	DESIGN	FLOW	1
GENERAL						D =	0.839		Zb	=	1.154				
w =	7.30	(metres)				E =	0.836		Χd	=	0.533		OFC b-a	=	0.5365
Wcr =	1.5	(metres)	Y =	0.748		F =	0.905		Ζd	=	0.586	1	DFC b-c	=	0.0913
						Mb =	0.839		M d	=	0.533		DFC c-b	=	0.3472
MAJOR ROAL	(ARM A)		MAJOR ROAL	O (ARM C)								ε	FCI b-d	=	0.0000
W a-c =	3,65	(metres)	W c-b =	2.60	(metres)	PROPORTIO	ON OF MIN	OR STRAIG	HT AHEAD TRAF	FIC :		C	FCr b-d	=	0,000,0
VI a-c =	200	(metres)	Vrc-b =	40	(metres)							1	OFC d-c	=	0.0000
q a-b =	100	(pcu/hr)	q c-a =	600	(pcu/hr)	rb-a =	0.9389		r d-c	=	0.000	Ī	DFC d-a	=	0.000
q a-c =	300	(pcu/hr)	q c-b =	200	(pcu/hr)	ql b-d =	0	(pcu/hr)	ql d-b	=	0 (pcu/hr)	(DFC a-d	=	0.000
						qr b-d =	0	(pcu/hr)	qr d-b	=	0 (pcu/hr)		FCI d-b	=	0.0000
												0	FCr d-b	=	0.000.0
MINOR ROAD	(ARM B)		MINOR ROAD	(ARM D)		CAPACITY	OF MOVE	MENT:							
W b-a =	3.00	(metres)	W d-c =		(metres)										
W b-c =	3.00	(metres)	W d-a =		(metres)	Q b-a =	315	(pcu/hr)	Q d-c	=	180 (pcu/hr)				
VI b-a =	29	(metres)	VI d-c =		(metres)	Q b-c =	723	(pcu/hr)	Q d-a	=	341 (pcu/hr)				
Vr b-a =	60	(metres)	Vr d-c =		(metres)	Q c-b =	576	(pcu/hr)	Q a-d	=	581 (pcu/hr)	CRITICAL I	DFC	=	0.54
Vrb-c =	80	(metres)	Vrd-a =		(metres)	QIb-d =	315	(pcu/hr)	QI d-b	=	193 (pcu/hr)				
q b-a =	169	(pcu/hr)	q d-c =		(pcu/hr)	Qr b-d =	315	(pcu/hr)	Qr d-b	=	193 (pcu/hr)				
q b-c =	66	(pcu/hr)	q d-a =		(pcu/hr)										
q b-d =		(pcu/hr)	q d-b =		(pcu/hr)	TOT	AL FLOW	=	1435 (PCU/HR)						

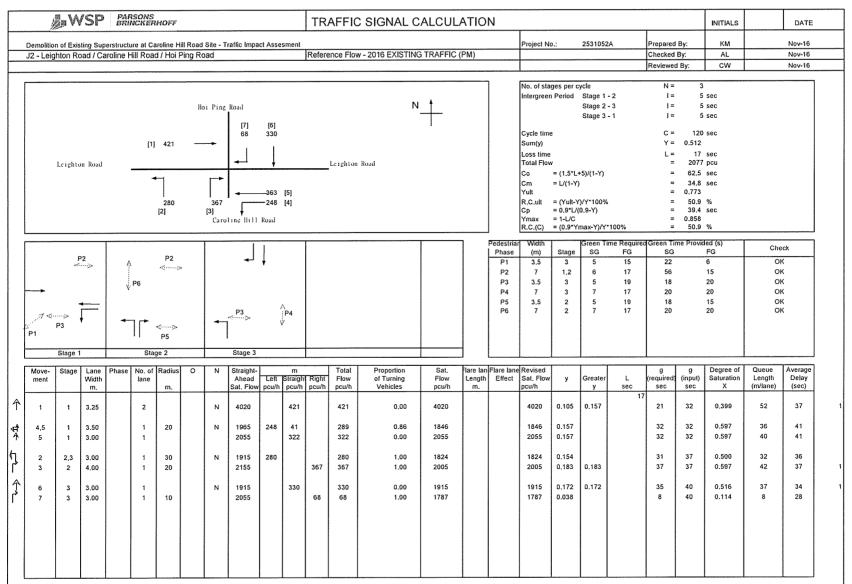

	TRAFFIC SIGNAL	CALCULATION			INITIALS	DATE
Demolition of Existing Superstructure at Caroline Hill Road S	ite - Traffic Impact Assesment	PROJECT NO.:	2531052A	PREPARED BY:	КМ	Nov-16
J1 - Link Road / Caroline Hill Road	Design Flow (Construction) - 2019	FORECAST TRAFFIC (Noor	i)	CHECKED BY:	AL	Nov-16
				REVIEWED BY:	cw	Nov-16

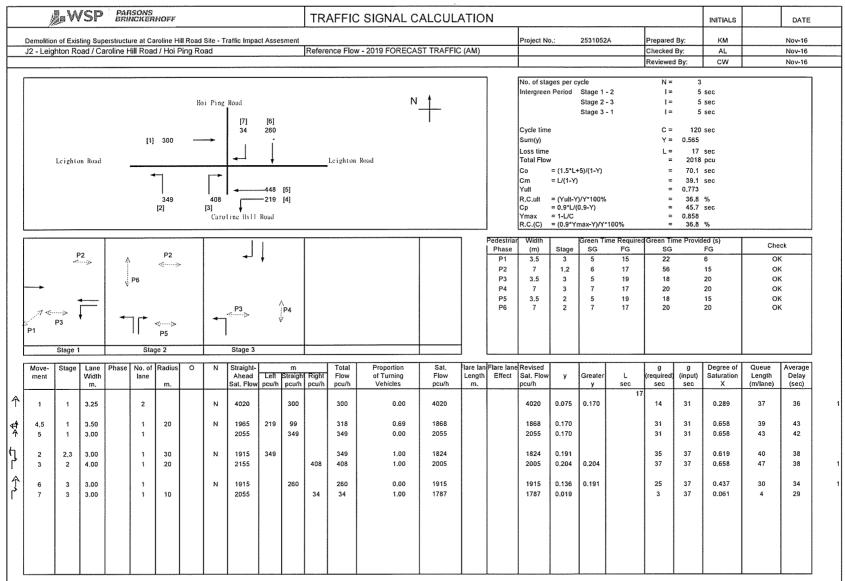
S:(GE	OMETR	RIC INPUT DATA)	
W	=	MAJOR ROAD WIDTH	
Wcr	=	CENTRAL RESERVE WIDTH	
W b-a	=	LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-a	
Wb-c	=	LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-c	
W c-b	=	LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM c-b	
VI b-a	=	VISIBILITY TO THE LEFT FOR VEHICLES WAITING IN STREAM b-a	
Vr b-a	=	VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a	
Vr b-c	=	VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c	
Vr c-b	=	VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM c-b	
Ха	=	STREAM-SPECIFIC (RIGHT TURN FROM A)	
Хb	=	STREAM-SPECIFIC (RIGHT TURN FROM B)	
Ζb	=	STREAM-SPECIFIC (LEFT TURN FROM B)	
Мb	=	STREAM-SPECIFIC (STRAIGHT AHEAD FROM B - LEFT LANE)	
Υ	=	(1-0.0345W)	
r b-a	=	RATIO OF FLOW TO CAPACITY IN STREAM b-a	

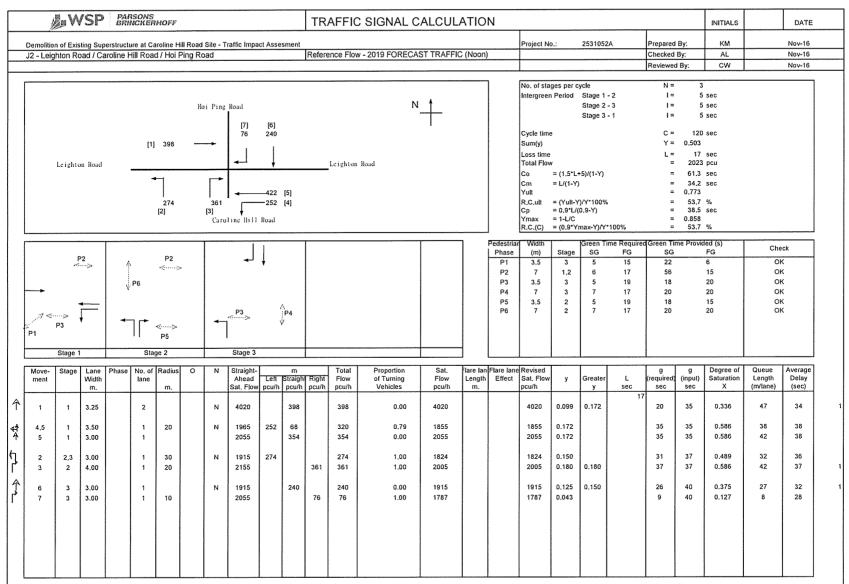

GEOMETRIC DETAILS:					GEOMETRIC FACTORS:						COMPARISION OF DESIGN FLOW TO CAPACITY:			
GENERAL						D =	0.839		Zb	=	1.154			
w =	7.30	(metres)				E =	0.836		Χd	=	0.533	DFC b-a	=	0.3365
W cr =	1.5	(metres)	Y =	0.748		F =	0.905		Zd	=	0.586	DFC b-c	=	0.1826
						M b =	0.839		M d	=	0.533	DFC c-b	=	0.3472
MAJOR ROAD (ARM A)			MAJOR ROAD (ARM C)						DFCI b-d	=	0.000.0			
W a-c =	3,65	(metres)	W c-b =	2.60	(metres)	PROPORTION OF MINOR STRAIGHT AHEAD TRAFFIC:					DFCr b-d	=	0.0000	
VI a-c =	200	(metres)	Vr c-b =	40	(metres)							DFC d-c	=	0.0000
qa-b =	100	(pcu/hr)	q c-a =	600	(pcu/hr)	rb-a =	0.6057		r d-c	=	0.000	DFC d-a	=	0.0000
q a-c =	300	(pcu/hr)	q c-b =	200	(pcu/hr)	ql b-d =	0	(pcu/hr)	ql d-b	=	0 (pcu/hr)	DFC a-d	=	0.0000
						qrb-d =	0	(pcu/hr)	qr d-b	=	0 (pcu/hr)	DFCI d-b	=	0.0000
												DFCr d-b	=	0.0000
MINOR ROAD (ARM B)		MINOR ROAD (ARM D)		CAPACITY OF MOVEMENT:										
W b-a =	3.00	(metres)	W d-c =		(metres)									
W b-c =	3.00	(metres)	W d-a =		(metres)	Q b-a =	315	(pcu/hr)	Q d-c	=	175 (pcu/hr)			
VI b-a =	29	(metres)	VId-c =		(metres)	Q b-c =	723	(pcu/hr)	Q d-a	=	341 (pcu/hr)			
Vr b-a =	60	(metres)	Vr d-c =		(metres)	Q c-b =	576	(pcu/hr)	Q a-d	=	581 (pcu/hr)	CRITICAL DFC	=	0.35
Vrb-c =	30	(metres)	Vrd-a =		(metres)	QI b-d =	315	(pcu/hr)	QI d-b	=	193 (pcu/hr)			
q b-a =	106	(pcu/hr)	q d-c =		(pcu/hr)	Qrb-d =	315	(pcu/hr)	Qr d-b	=	193 (pcu/hr)			
q b-c =	132	(pcu/hr)	q d-a =		(pcu/hr)									
q b-d =		(pcu/hr)	q d-b =		(pcu/hr)	TO	TAL FLOW	=	1438 (PCU/HR))				

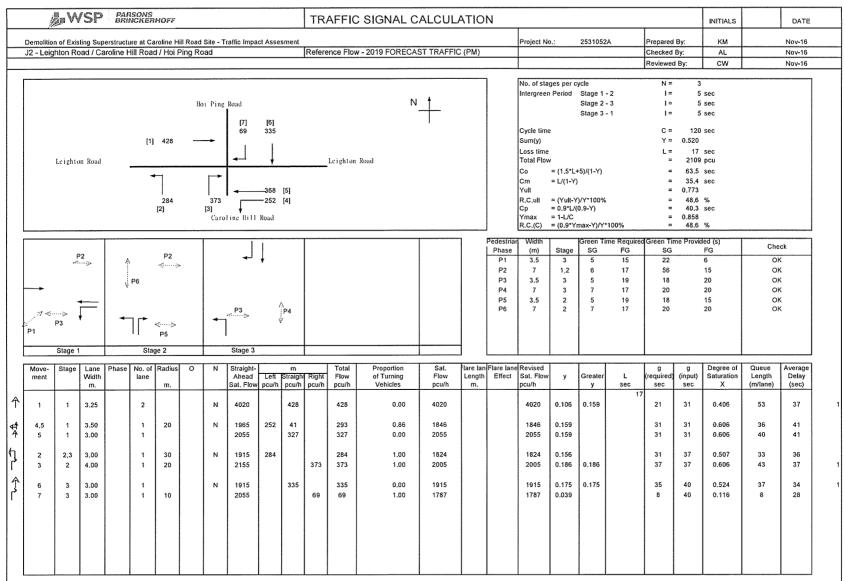

	TRAFFIC SIGNAL	TRAFFIC SIGNAL CALCULATION						
Demolition of Existing Superstructure at Caroline Hill	Road Site - Traffic Impact Assesment	PROJECT NO.: 25310	52A PREPARED BY:	км	Nov-16			
J1 - Link Road / Caroline Hill Road	Design Flow (Construction) - 2019	FORECAST TRAFFIC (PM)	CHECKED BY:	AL	Nov-16			
			REVIEWED BY:	cw	Nov-16			

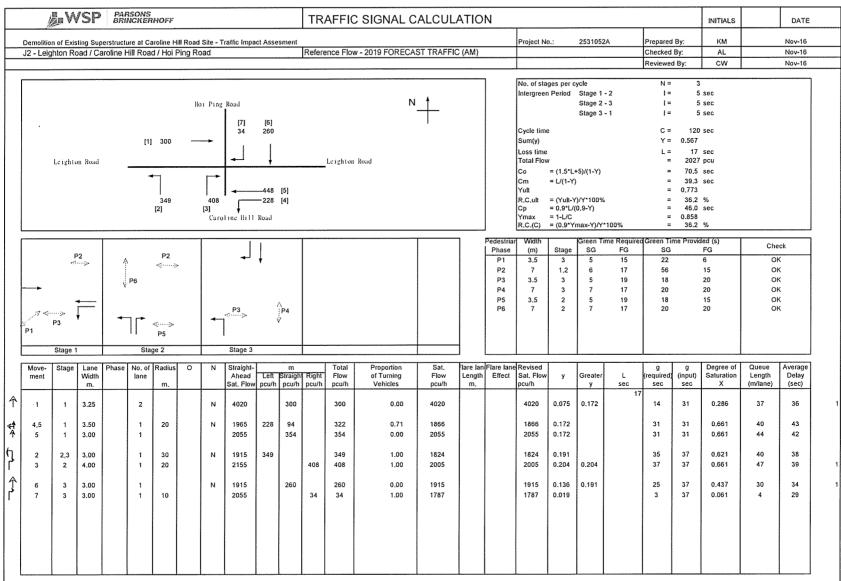


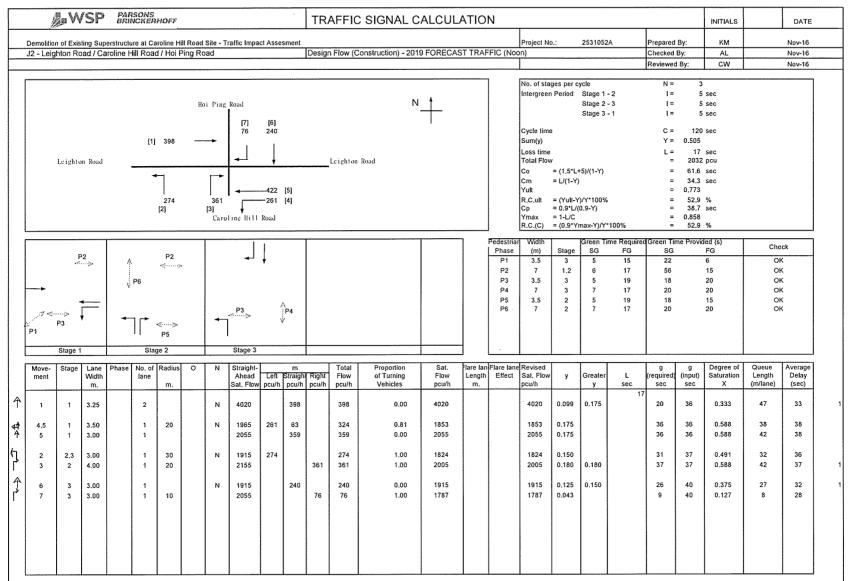

NOTES : (GI	EOMET	RIC INPUT DATA)	
w ·	=	MAJOR ROAD WIDTH	
Wcr	=	CENTRAL RESERVE WIDTH	
W b-a	=	LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-a	
W b-c	=	LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-c	
W c-b	=	LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM c-b	
VI b-a	=	VISIBILITY TO THE LEFT FOR VEHICLES WAITING IN STREAM b-a	
Vr b-a	=	VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a	
Vr b-c	=	VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c	
Vr c-b	=	VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM c-b	
Ха	=	STREAM-SPECIFIC (RIGHT TURN FROM A)	
Хb	=	STREAM-SPECIFIC (RIGHT TURN FROM B)	
Ζb	=	STREAM-SPECIFIC (LEFT TURN FROM B)	
Мb	=	STREAM-SPECIFIC (STRAIGHT AHEAD FROM B - LEFT LANE)	
Υ	=	(1-0.0345W)	
r b-a	=	RATIO OF FLOW TO CAPACITY IN STREAM b-a	

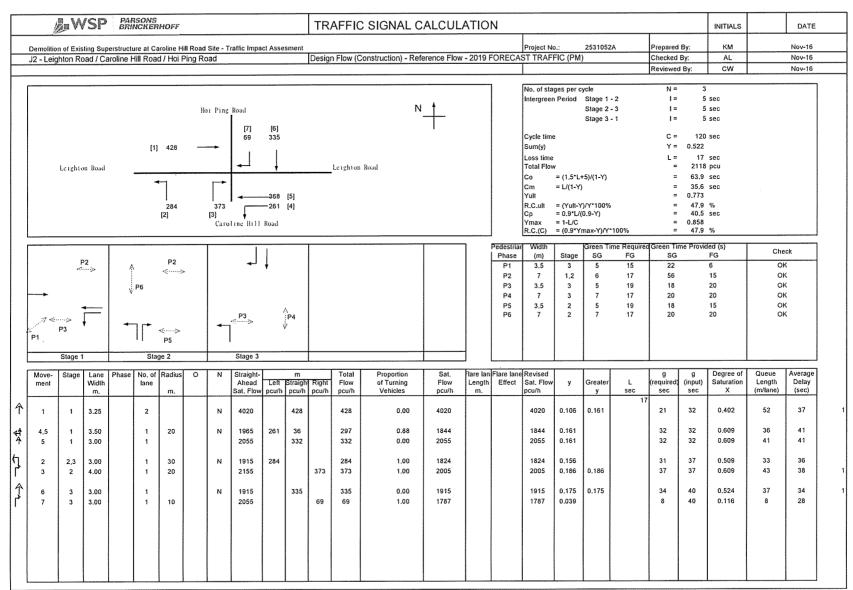

GEOMETRIC	DETAILS:					GEOMETR	IC FACTO	RS:				COMPARISION OF DESIGN TO CAPACITY:	I FLOV	V
GENERAL						D =	0.839		Zb	=	1.154			
w =	7,30	(metres)				E =	0.836		Χd	=	0.533	DFC b-a	=	0.6000
Wcr =	1.5	(metres)	Y =	0.748		F =	0.905		Ζd	=	0.586	DFC b-c	=	0.1134
						M b =	0.839		M d	=	0.533	DFC c-b	=	0.3472
MAJOR ROAL	D (ARM A)		MAJOR ROAL	(ARM C)								DFCI b-d	=	0.0000
W a-c =	3,65	(metres)	W c-b =	2.60	(metres)	PROPORTI	ION OF MI	NOR STRAIG	HT AHEAD TRAF	FIC :		DFCr b-d	=	0.0000
VI a-c =	200	(metres)	Vrc-b =	40	(metres)							DFC d-c	=	0.0000
qa-b =	100	(pcu/hr)	q c-a =	600	(pcu/hr)	r b-a =	1.0739		r d-c	=	0.000	DFC d-a	=	0.0000
q a-c =	300	(pcu/hr)	q c-b =	200	(pcu/hr)	qlb-d =	0	(pcu/hr)	ql d-b	=	0 (pcu/hr)	DFC a-d	=	0.0000
						qrb-d =	0	(pcu/hr)	qr d-b	=	0 (pcu/hr)	DFCI d-b	=	0.0000
												DFCr d-b	=	0.0000
MINOR ROAD	(ARM B)		MINOR ROAD	(ARM D)		CAPACITY	OF MOVE	MENT:						
W b-a ≔	3.00	(metres)	W d-c =		(metres)									
W b-c =	3.00	(metres)	W d-a =		(metres)	Q b-a =	315	(pcu/hr)	Q d-c	=	176 (pcu/hr)			
VI b-a =	29	(metres)	VI d-c =		(metres)	Q b-c =	723	(pcu/hr)	Q d-a	=	341 (pcu/hr)			
Vr b-a =	80	(metres)	Vrd-c =		(metres)	Q c-b =	576	(pcu/hr)	Q a-d	=	581 (pcu/hr)	CRITICAL DFC	=	0.60
Vr b-c =	30	(metres)	Vrd-a =		(metres)	QIb-d =	315	(pcu/hr)	QI d-b	=	193 (pcu/hr)			
q b-a =	189	(pcu/hr)	q d-c =		(pcu/hr)	Qr b-d =	315	(pcu/hr)	Qr d-b	=	193 (pcu/hr)			
q b-c =	82	(pcu/hr)	q d-a =		(pcu/hr)									
q b-d =		(pcu/hr)	q d-b =		(pcu/hr)	тот	TAL FLOW	=	1471 (PCU/HR)					

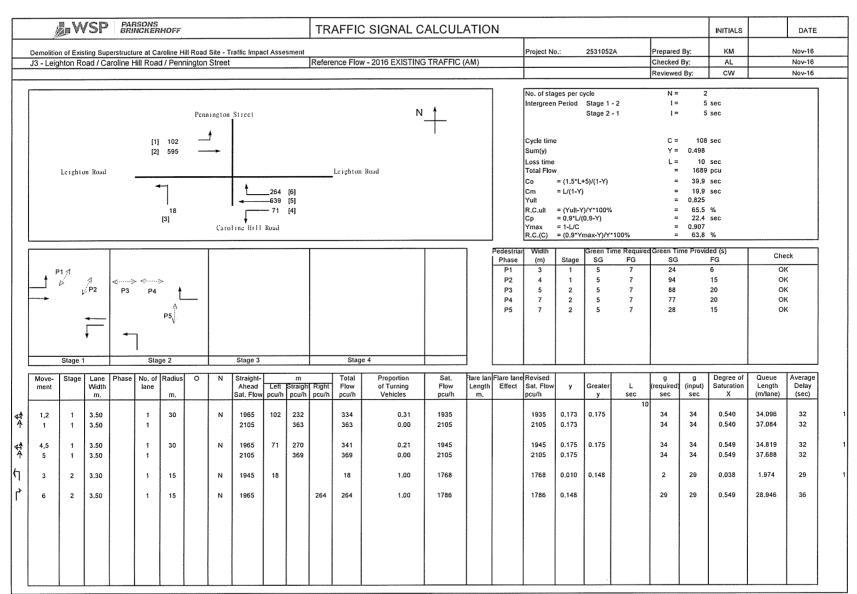


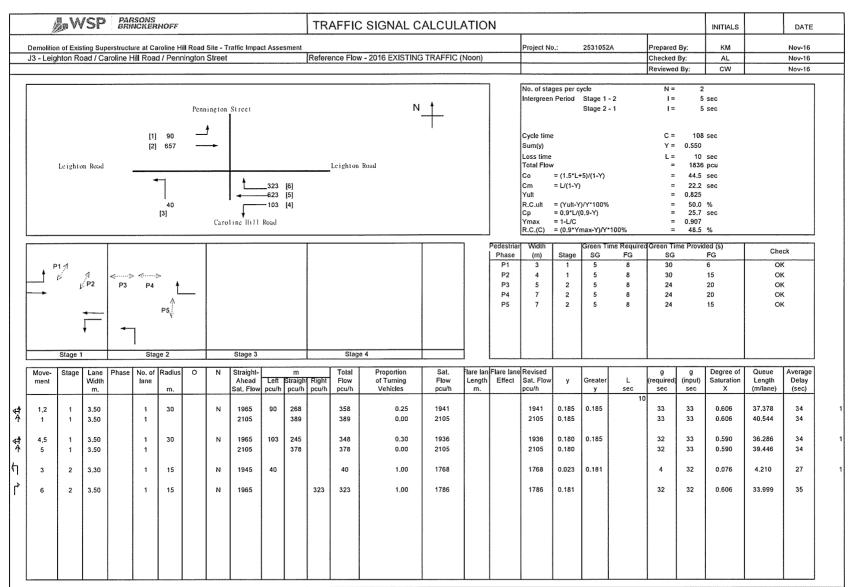


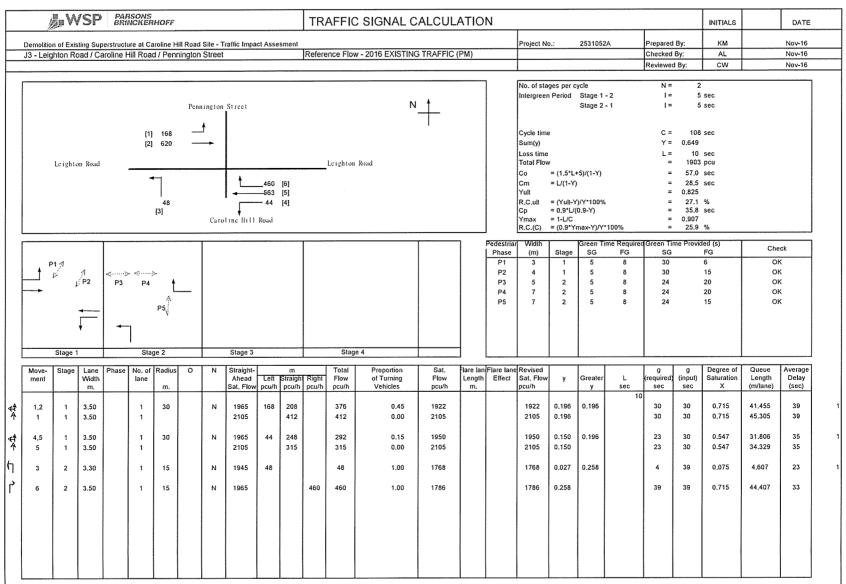


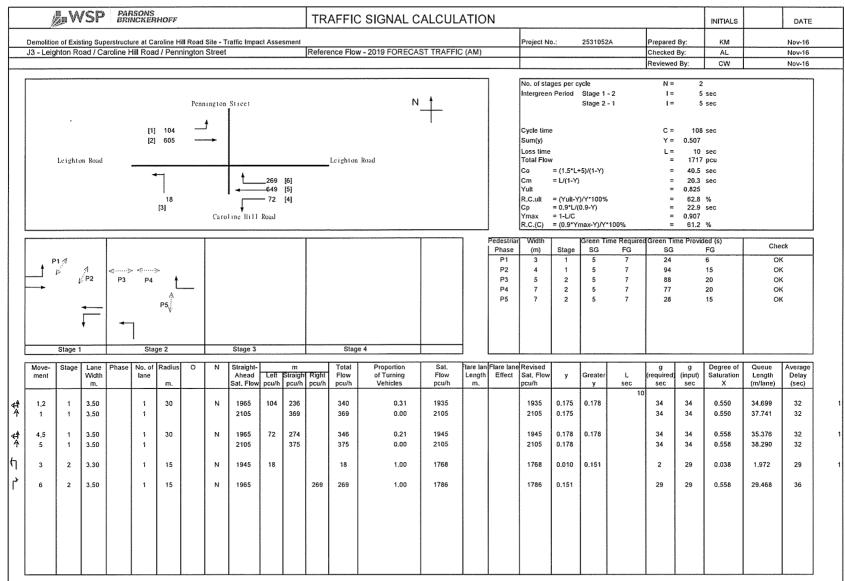


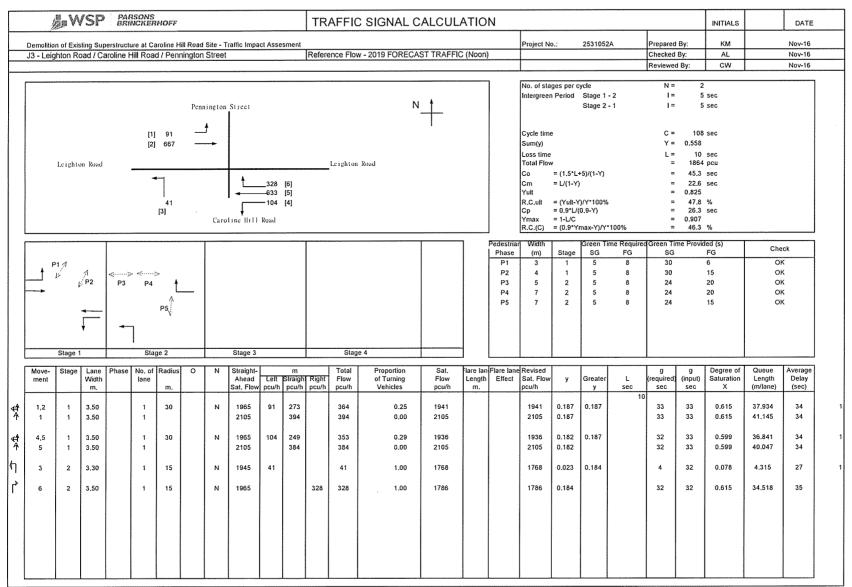


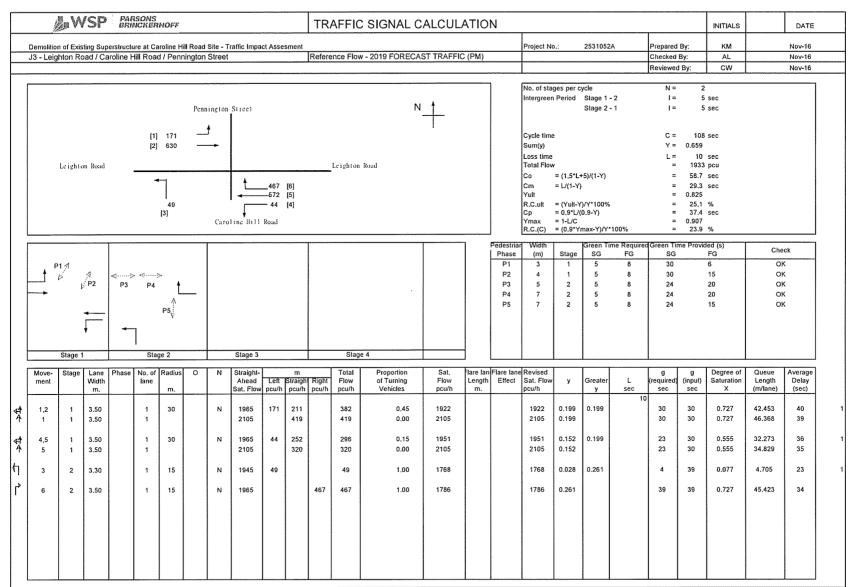


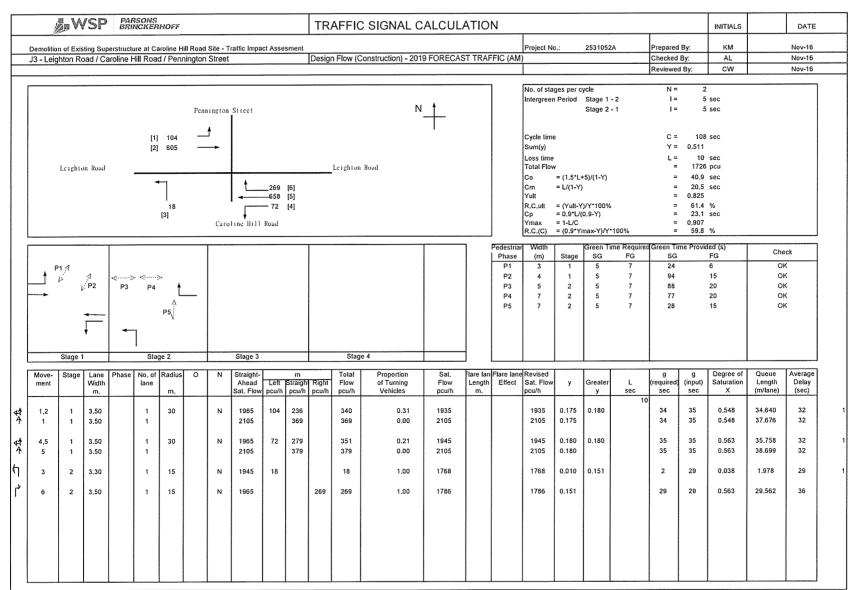


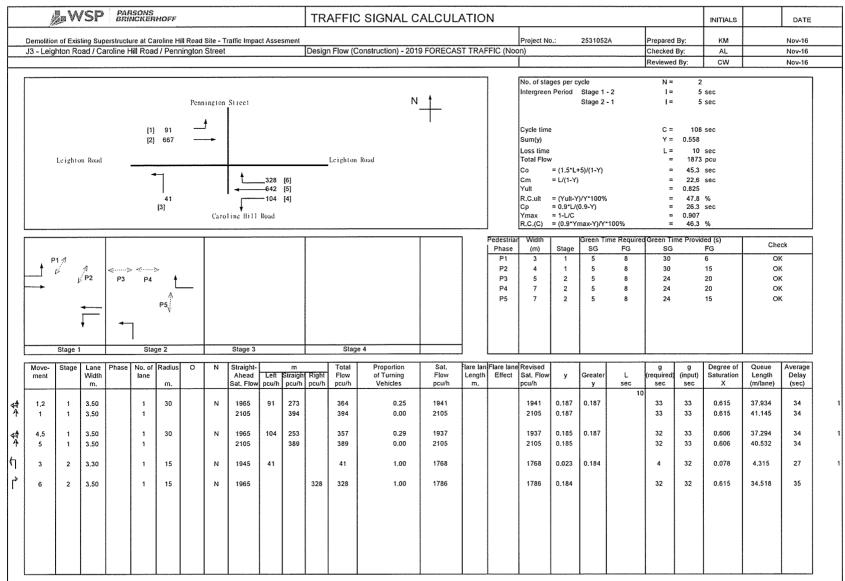


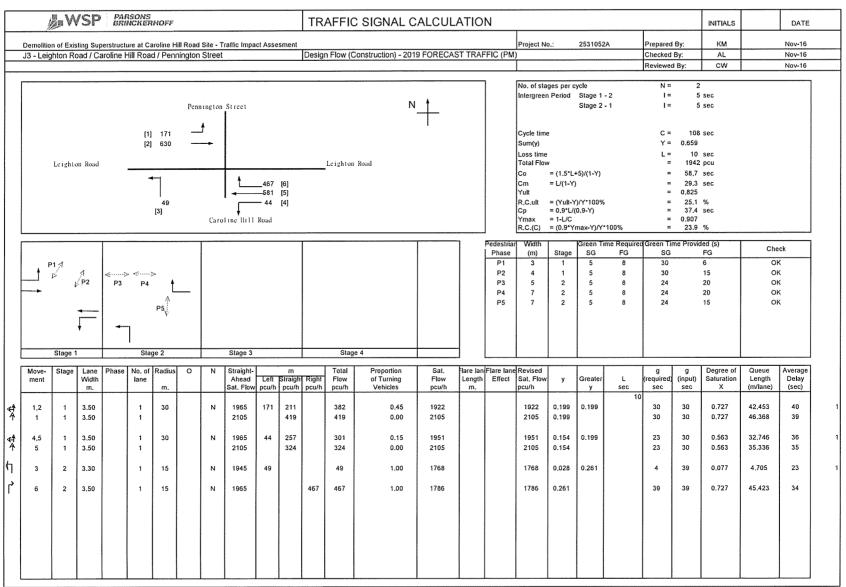

WSP I Parsons Brinckerhoff 2531052A

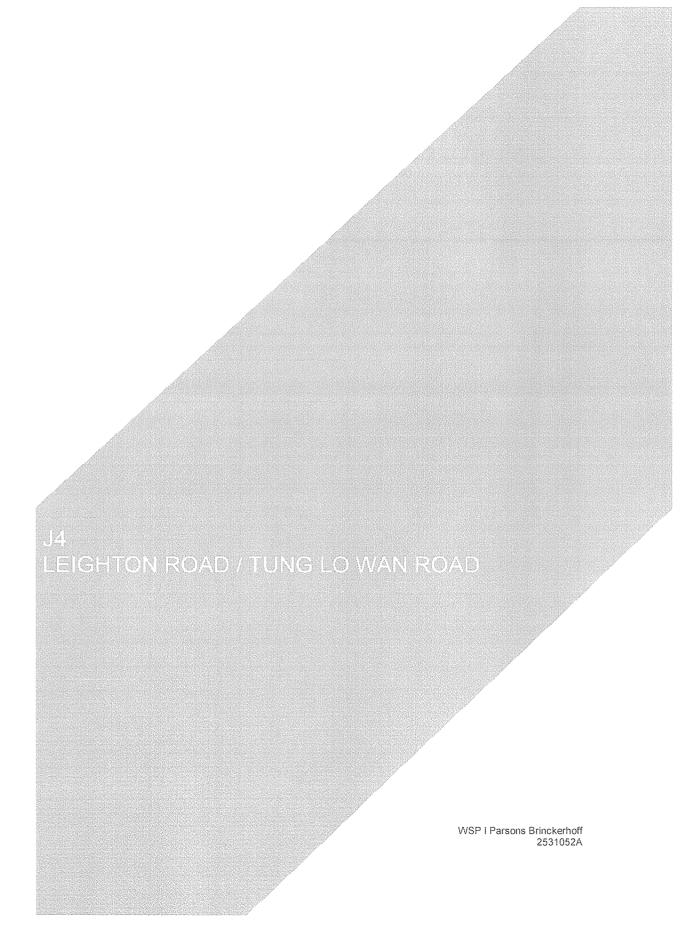


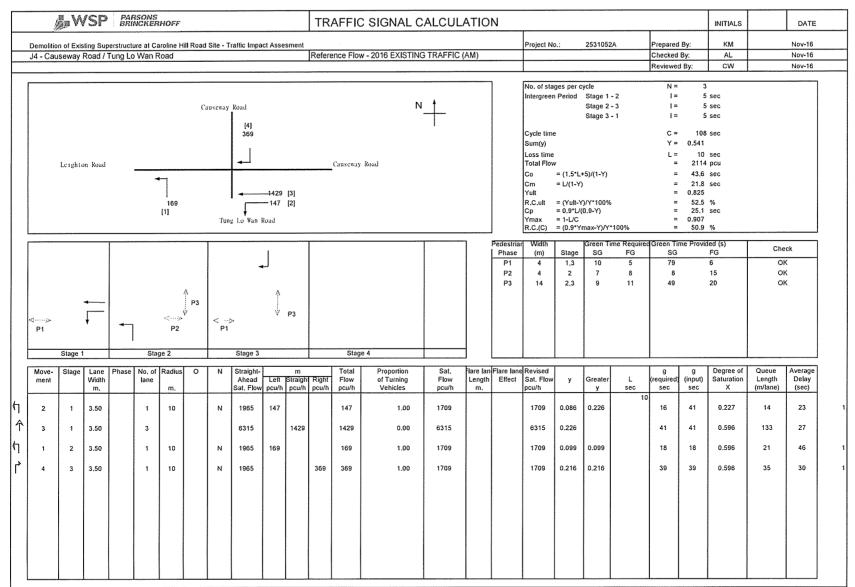


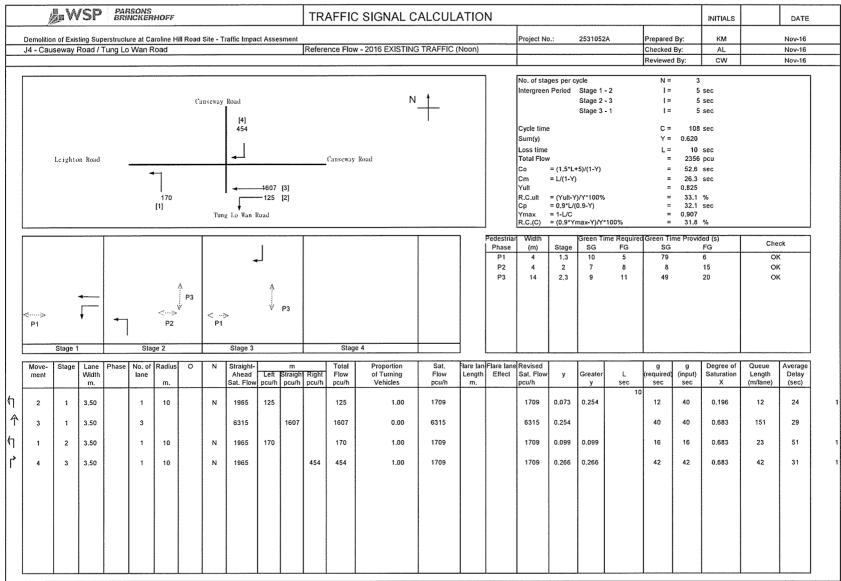

N - NEAR SIDE LANE

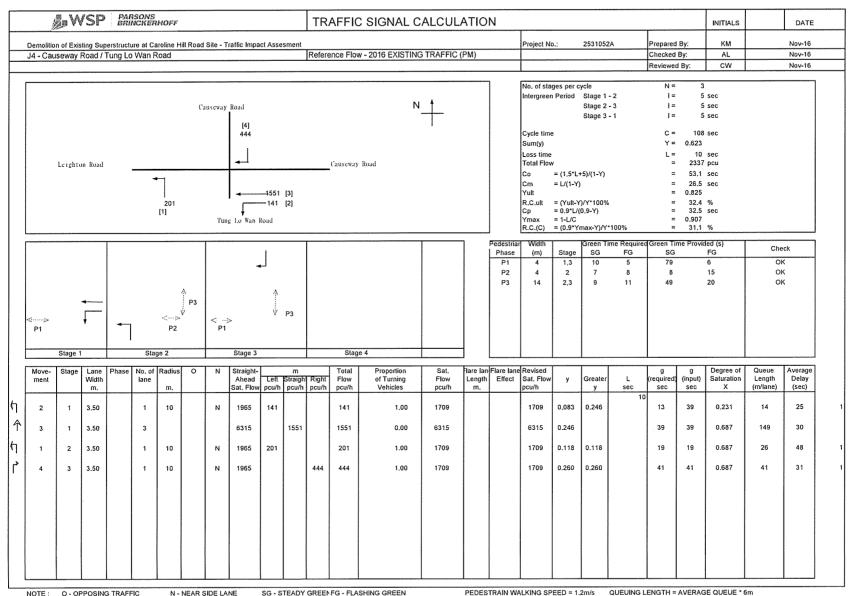


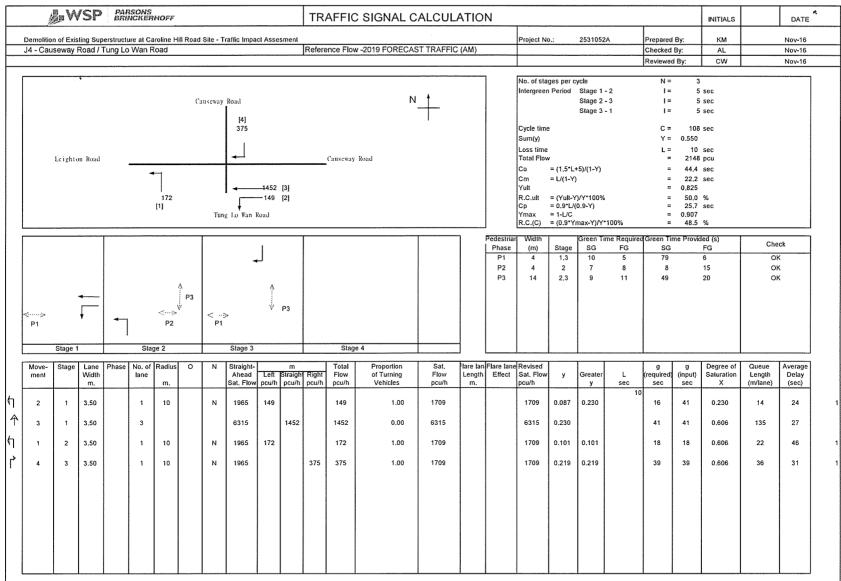

N - NEAR SIDE LANE

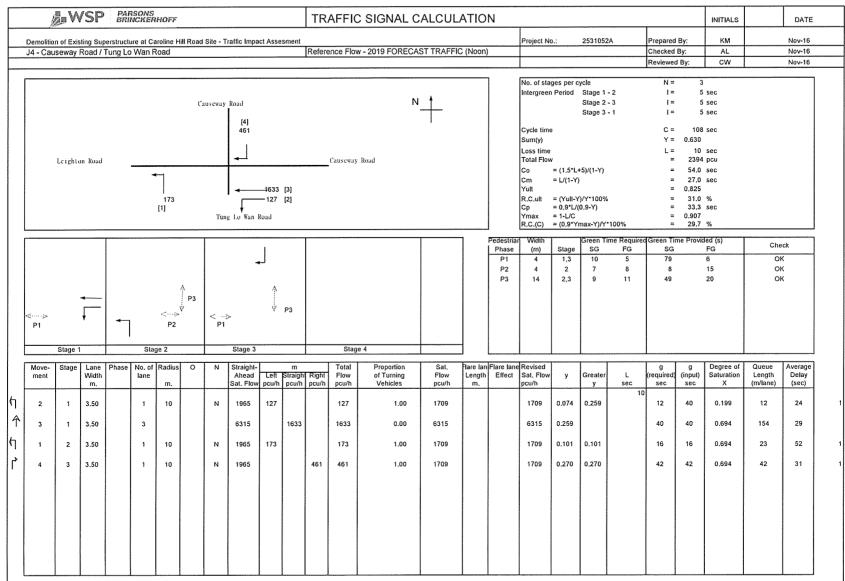


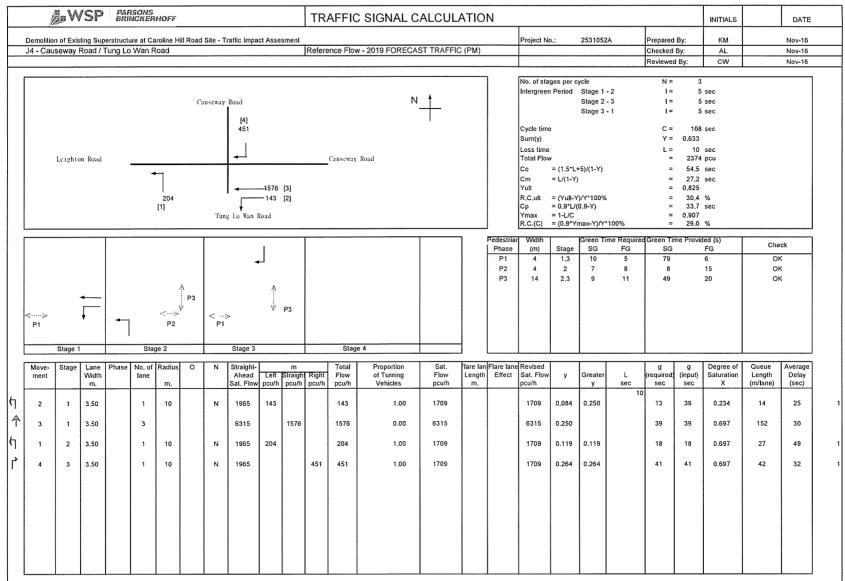


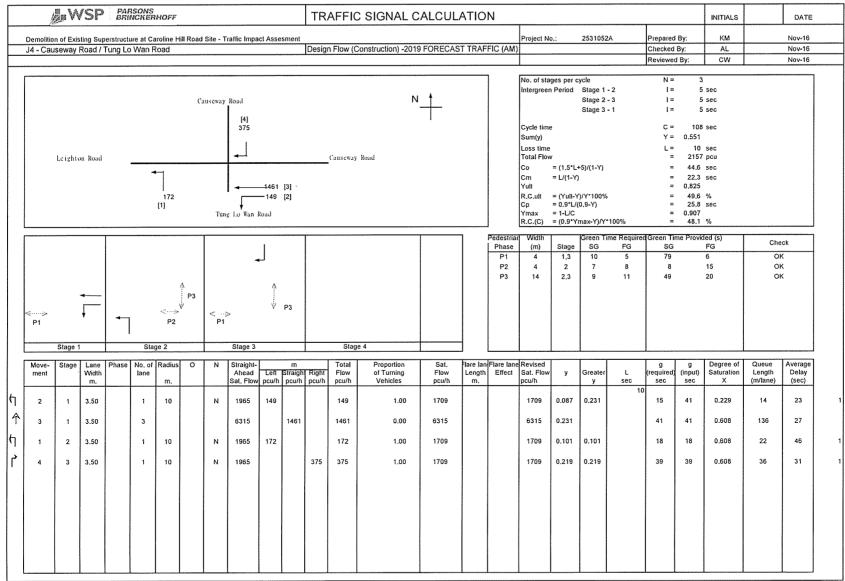


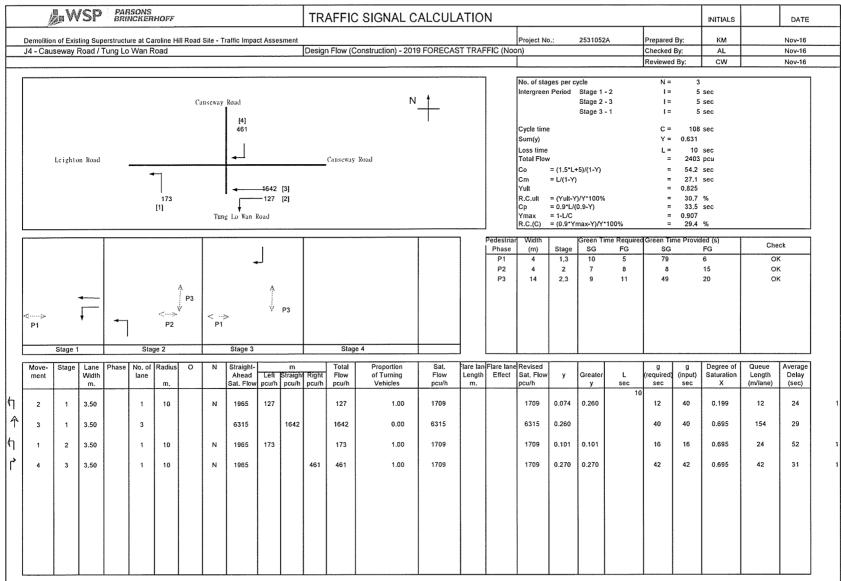


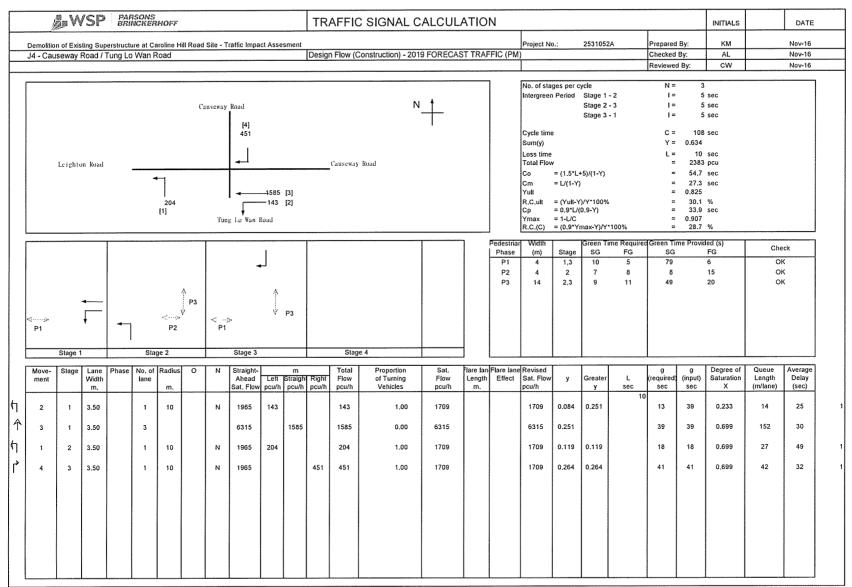


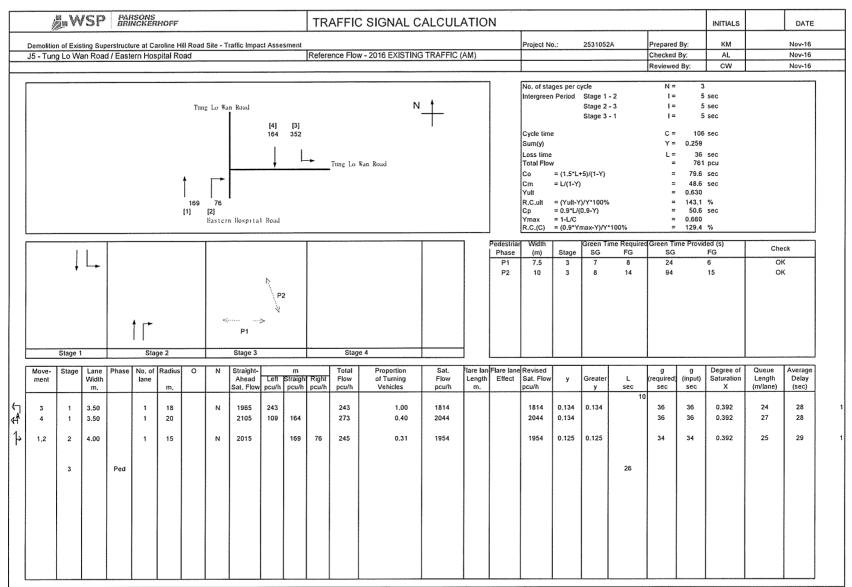


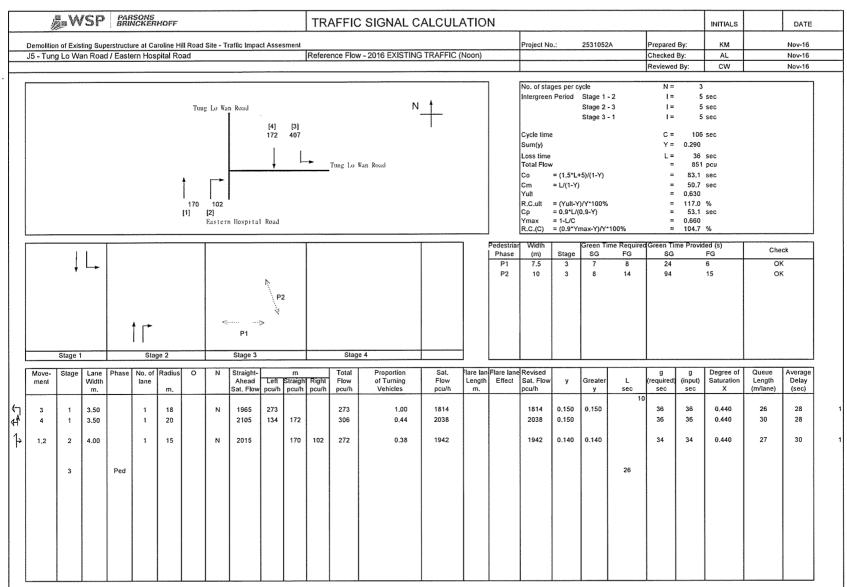


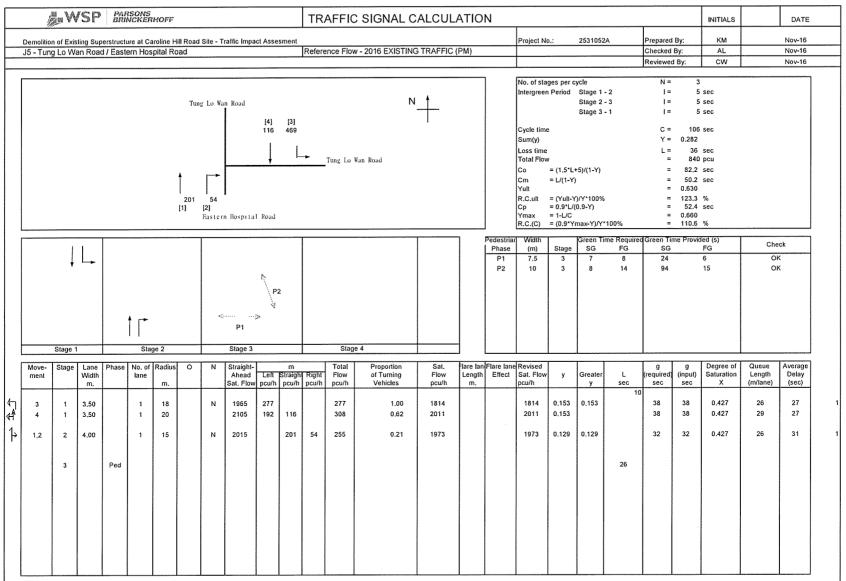


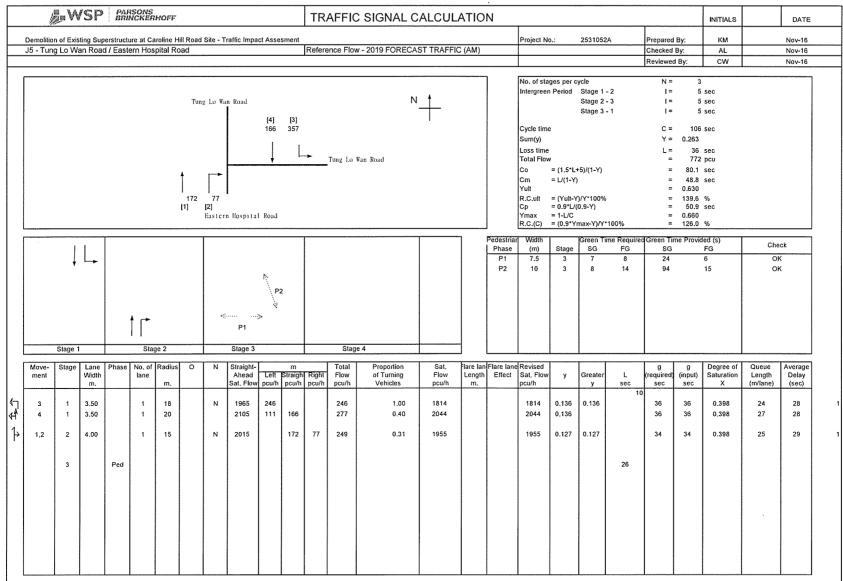


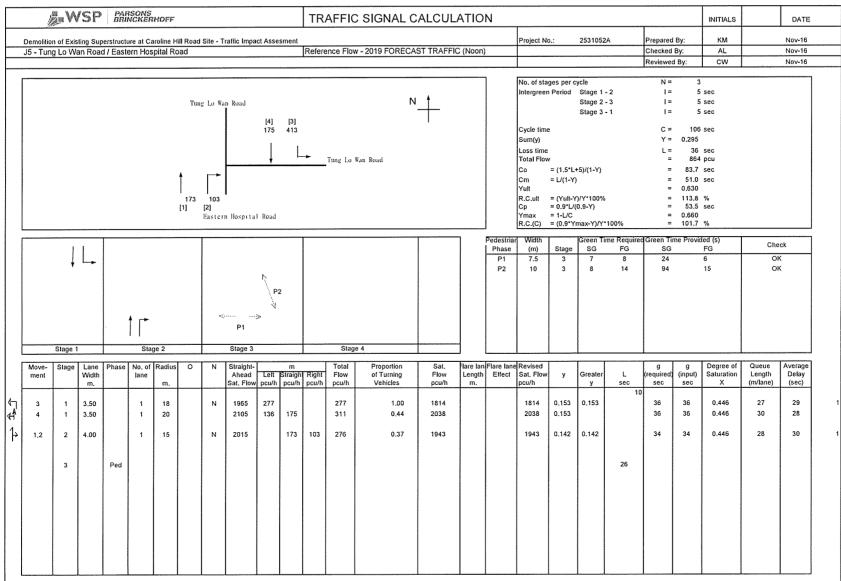


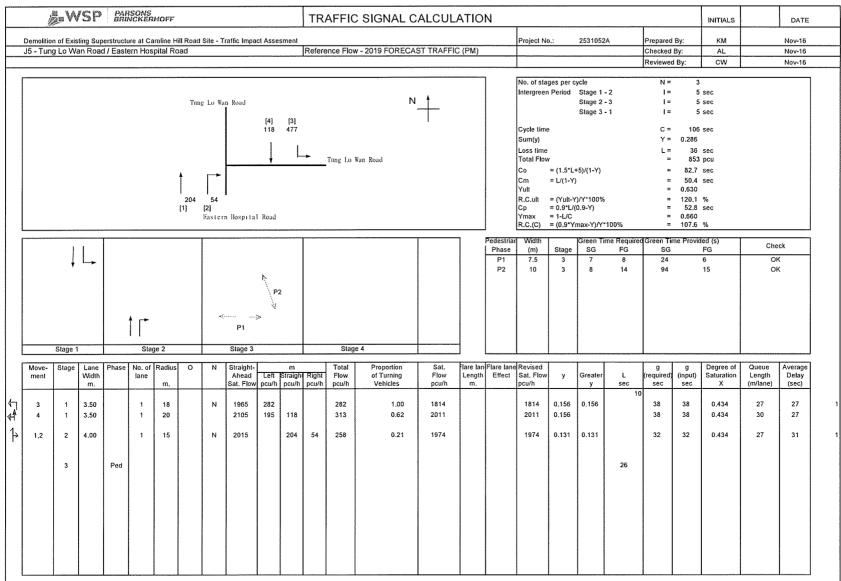


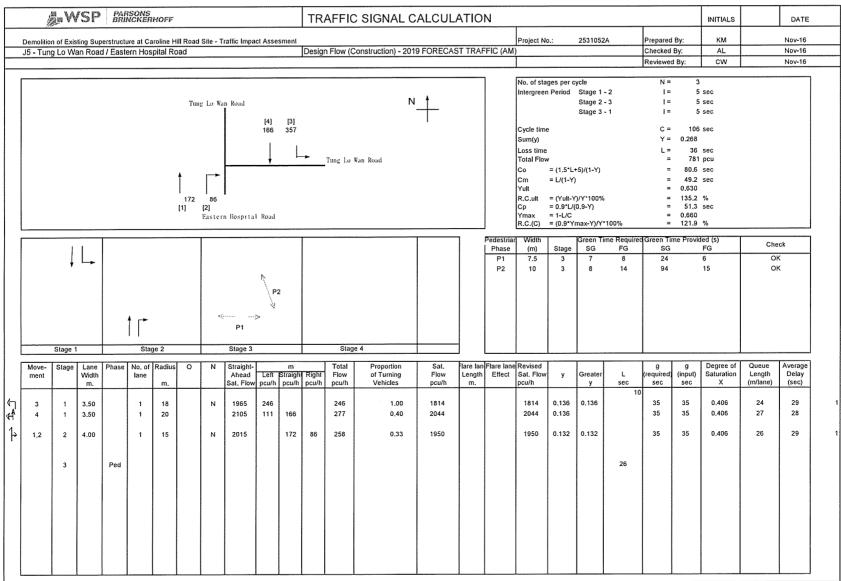


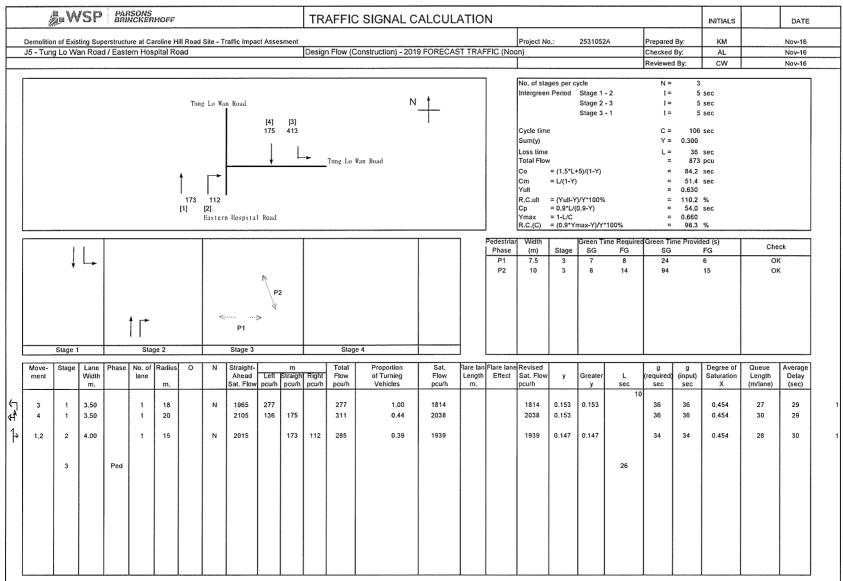


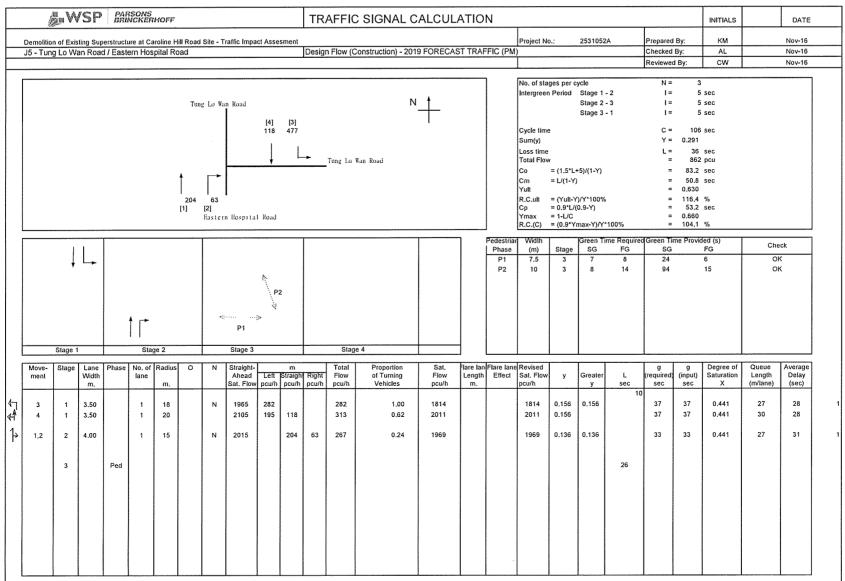

J5 EASTERN HOSPITAL ROAD / TUNG LO WAN ROAD / KA NING PATH

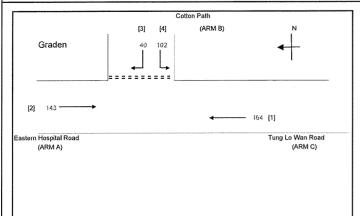

> WSP I Parsons Brinckerhoff 2531052A











WSP I Parsons Brinckerhoff 2531052A

	PRIORITY JUNC	TION CALCULATION	1		INITIALS	DATE
Demolition of Existing Superstructure at Caroline Hill Road Site - Ti	affic Impact Assesment	PROJECT NO.:	2531052A	PREPARED BY:	KM	Nov-16
J6 - Cotton path / Eastern Hospital Road / Tung Lo Wan Road	Reference Flow - 2016 EXISTI	NG TRAFFIC (AM)		CHECKED BY:	AL	Nov-16
				REVIEWED BY:	cw	Nov-16

NOTES: (GEOMETRIC INPUT DATA)

W = MAJOR ROAD WIDTH

W cr = CENTRAL RESERVE WIDTH

W b-a = LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-a

W b-c = LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-c

W c-b = LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-a

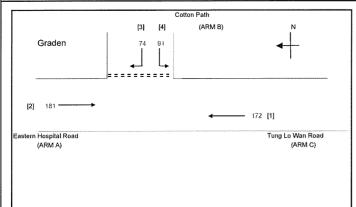
VI b-a = VISIBILITY TO THE LEFT FOR VEHICLES WAITING IN STREAM b-a

VI b-a = VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a

VI b-c = VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c

VI c-b = VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c

VI c-b = STREAM-SPECIFIC B-A


E = STREAM-SPECIFIC B-C

F = STREAM-SPECIFIC C-B

Y = (1-0.0345W)

METRIC DETAILS:	GEOMETRIC FACTORS:	THE CAPACITY OF MOVEMENT :	COMPARISION OF DESIGN FLOW TO CAPACITY:	
MAJOR ROAD (ARM A)				
W = 4.00 (metres)	D = 1.2671987	Q b-a = 697	DFC b-a	= 0.0574
W cr = 0 (metres)	E = 1.3744021	Q b-c = 962 Q b-c (O) = 948.2	DFC b-c	= 0.1060
q a-b = 0 (pcu/hr)	F = 0.5859548	Q c-b = 410	DFC c-b	= 0.0000
q a-c = 143 (pcu/hr)	Y = 0.862	Q b-ac = 869		
MAJOR ROAD (ARM C)	F for (Qb-ac) = 0.7183099	TOTAL FLOW = 449 (PCU/HR)		
W c-b = (metres)				
Vr c-b = (metres)				
q c-a = 164 (pcu/hr)				
q c-b = 0 (pcu/hr)				
			CRITICAL DFC	= 0.11
MINOR ROAD (ARM B)				
W b-a = 9.00 (metres)				
W b-c = 9,00 (metres)				
VI b-a = 20 (metres)				
Vr b-a = 25 (metres)				
Vr b-c = 25 (metres)				
q b-a = 40 (pcu/hr)				
q b-c = 102 (pcu/hr)				

	PRIORITY JUNC	TION CALCULATION			INITIALS	DATE
Demolition of Existing Superstructure at Caroline Hill Road Site - Tra	affic Impact Assesment	PROJECT NO.:	2531052A	PREPARED BY:	КМ	Nov-16
J6 - Cotton path / Eastern Hospital Road / Tung Lo Wan Road	Reference Flow - 2016 EXISTII	NG TRAFFIC (Noon)		CHECKED BY:	AL	Nov-16
				REVIEWED BY:	cw	Nov-16

NOTES: (GEOMETRIC INPUT DATA)

W = MAJOR ROAD WIDTH

W cr = CENTRAL RESERVE WIDTH

W b-a = LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-a

W b-c = LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-c

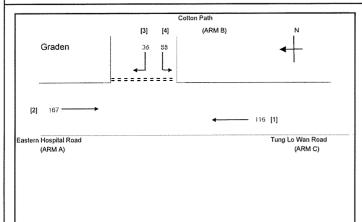
W c-b = LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM c-b

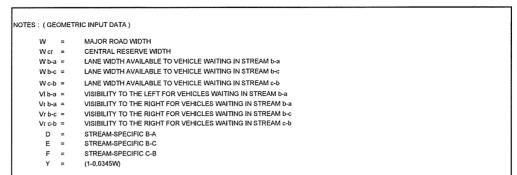
VI b-a = VISIBILITY TO THE LEFT FOR VEHICLES WAITING IN STREAM b-a

VI b-c = VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c

VI c-b = VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c

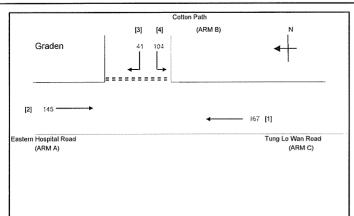
VI c-b = STREAM-SPECIFIC B-A


E = STREAM-SPECIFIC B-C

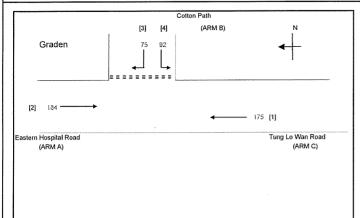

F = STREAM-SPECIFIC C-B

Y = (1-0.0345W)

GEO	METRIC DETAILS	3:		GEOMETRIC FACTO	ORS:		THE CAPACITY OF MOV	'EMEN	т:		COMPARISION OF DESIGN FLOW TO CAPACITY:		
	MAJOR ROAL												
	w =	4.00	(metres)	D	=	1.2671987	Q b-a =	680			DFC b-a	=	0.1088
	W cr =	G	(metres)	E	=	1.3744021	Q b-c =	946	Q b-c (O) =	920.3	DFC b-c	=	0.0962
	qa-b =	0	(pcu/hr)	F	=	0.5859548	Q c-b =	403			DFC c-b	=	0.0000
	q a-c =	181	(pcu/hr)	Y	=	0.862	Q b-ac =	805					
	MAJOR ROAD	(ARM C)		F for (Qb-ac	;) =	0.5515152	TOTAL FLOW	=	518	(PCU/HR)			
	W c-b =		(metres)										
	Vrc-b =		(metres)										
	q c-a =	172	(pcu/hr)										
	q c-b =	0	(pcu/hr)										
											CRITICAL DFC	=	0.11
	MINOR ROAD	(ARM B)											
	W b-a =	9.00	(metres)										
	W b-c =	9.00	(metres)										
	VIb-a ≔	20	(metres)										
	Vrb-a ≖	25	(metres)										
	Vrb-c ≔	25	(metres)										
	q b-a =	74	(pcu/hr)										
	q b-c =	91	(pcu/hr)										

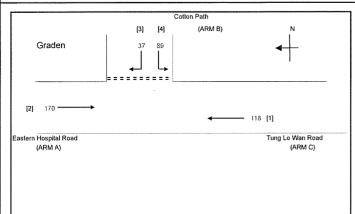

	PRIORITY JUNC	TION CALCULATION			INITIALS	DATE
Demolition of Existing Superstructure at Caroline Hill Road Site - To	affic Impact Assesment	PROJECT NO.:	2531052A	PREPARED BY:	KM	Nov-16
J6 - Cotton path / Eastern Hospital Road / Tung Lo Wan Road	Reference Flow - 2016 EXISTIN	NG TRAFFIC (PM)		CHECKED BY:	AL	Nov-16
				REVIEWED BY:	cw	Nov-16

METRIC DETAIL:	5 :		GEOMETRIC FA	CTORS :		THE CAPACITY OF MO	VEME	ENT :		COMPARISION OF DESIGN FLOW TO CAPACITY:		
MAJOR ROAL	(ARM A)											
W =	4.00	(metres)	D	=	1.2671987	Q b-a =	699	9		DFC b-a	=	0.0515
W cr =	0	(metres)	E	=	1.3744021	Q b-c =	952	2 Q b-c (O) =	939.7	DFC b-c	=	0.0924
qa-b =	0	(pcu/hr)	F	=	0.5859548	Q c-b =	406	6		DFC c-b	=	0.0000
q a-c =	167	(pcu/hr)	Y	=	0.862	Q b-ac =	86	31				
MAJOR ROAD	(ARM C)		F for (QI	b-ac) =	0.7096774	TOTAL FLOW	=	407	(PCU/HR)			
W c-b =		(metres)										
Vrc-b =		(metres)										
q c-a =	116	(pcu/hr)										
q c-b =	0	(pcu/hr)										
										CRITICAL DFC	=	0.09
MINOR ROAD	(ARM B)											
W b-a =	9,00	(metres)										
W b-c =	9,00	(metres)										
VIb-a =	20	(metres)										
Vrb-a ≃	25	(metres)										
Vrb-c =	25	(metres)										
q b-a =	36	(pcu/hr)										
q b-c =	88	(pcu/ht)										


	PRIORITY JUNC	TION CALCULATION			INITIALS	DATE
Demolition of Existing Superstructure at Caroline Hill Road Site - Tr	affic Impact Assesment	PROJECT NO.:	2531052A	PREPARED BY:	KM	Nov-16
J6 - Cotton path / Eastern Hospital Road / Tung Lo Wan Road	Reference Flow - 2019 FOREC	AST TRAFFIC (AM)		CHECKED BY:	AL	Nov-16
				REVIEWED BY:	cw	Nov-16

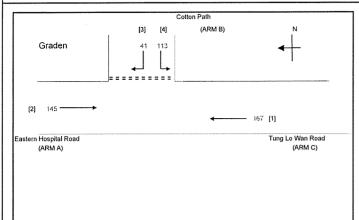
NOTES: (GEOMETRIC INPUT DATA) W = MAJOR ROAD WIDTH W cr = CENTRAL RESERVE WIDTH W b-a = LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-a W b-c = LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-c W c-b = LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM c-b VI b-a = VISIBILITY TO THE LEFT FOR VEHICLES WAITING IN STREAM b-a Vr b-a = VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a Vr b-c = VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c Vrc-b = VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM c-b D = STREAM-SPECIFIC B-A STREAM-SPECIFIC B-C E = F = STREAM-SPECIFIC C-B (1-0,0345W)

	GEOMETRIC DETAILS:			GEOMETRIC FACTO	ORS :		THE CAPACITY OF MOV	/EMEN	т:		COMPARISION OF DESIGN FLOW		
											TO CAPACITY:		
	MAJOR ROAD												
	W =	4.00	(metres)	D	==	1.2671987	Q b-a =	695			DFC b-a	=	0.0590
	W cr =	0	(metres)	E	=	1.3744021	Q b-c =	961	Q b-c (O) =	946.8	DFC b-c	=	0.1082
1	q a-b =	0	(pcu/hr)	F	=	0.5859548	Q c-b =	410			DFC c-b	=	0.0000
	qa-c =	145	(pcu/hr)	Y	æ	0.862	Q b-ac =	867					
	MAJOR ROAD	ARM C)		F for (Qb-ac) =	0.7172414	TOTAL FLOW	=	457	(PCU/HR)			
	W c-b =		(metres)										
	Vrc-b =		(metres)										
	q c-a =	167	(pcu/hr)										
	q c-b =	0	(pcu/hr)										
											CRITICAL DFC	=	0.11
	MINOR ROAD (ARM B)											
	W b-a =	9.00	(metres)										
	W b-c =	9,00	(metres)										
	VIb-a =	20	(metres)										
ŀ	Vrb-a =	25	(metres)										
	Vrb-c =	25	(metres)										
	q b-a =	41	(pcu/hr)										
	q b-c =	104	(pcu/hr)										


	PRIORITY JUNC	TION CALCULATION			INITIALS	DATE
Demolition of Existing Superstructure at Caroline Hill Road Site - Tr	affic Impact Assesment	PROJECT NO.:	2531052A	PREPARED BY:	KM	Nov-16
J6 - Cotton path / Eastern Hospital Road / Tung Lo Wan Road	Reference Flow - 2019 FORECA	AST TRAFFIC (Noon)		CHECKED BY:	AL	Nov-16
				REVIEWED BY:	cw	Nov-16

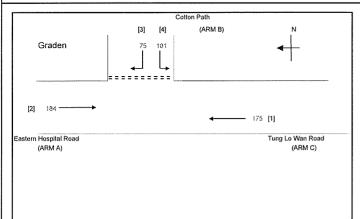
NOTES: (GEOMETRIC INPUT DATA) MAJOR ROAD WIDTH CENTRAL RESERVE WIDTH LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-a Wb-a = LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-c W b-c = LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM c-b W c-b = VI b-a = VISIBILITY TO THE LEFT FOR VEHICLES WAITING IN STREAM b-a VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a Vrb-a = VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c Vrb-c = Vrc-b = VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM c-b STREAM-SPECIFIC B-A E = STREAM-SPECIFIC B-C F = STREAM-SPECIFIC C-B Y = (1-0.0345W)

METRIC DETAILS:	GEOMETRIC FACTORS :	THE CAPACITY OF MOVEMENT:	COMPARISION OF DESIGN FLOW TO CAPACITY:	
MAJOR ROAD (ARM A)				
W = 4.00 (metres)	D = 1.2671987	Q b-a = 678	DFC b-a = 0.1196	
W cr = 0 (metres)	E = 1.3744021	Q b-c = 945 Q b-c (O) = 918.9	DFC b-c = 0.0974	
q a-b = 0 (pcu/hr)	F = 0,5859548	Q c-b = 403	DFC c-b $=$ 0.0000	
q a-c = 184 (pcu/hr)	Y = 0.862	Q b-ac = 803		
MAJOR ROAD (ARM C)	F for (Qb-ac) = 0.5508982	TOTAL FLOW = 526 (PCU/HR)		
W c-b = (metres)				
Vr c-b = (metres)				
q c-a = 175 (pcu/hr)				
q c-b = 0 (pcu/hr)				
			CRITICAL DFC = 0.11	
MINOR ROAD (ARM B)				
W b-a = 9.00 (metres)				
W b-c = 9,00 (metres)				
VIb-a = 20 (metres)				
Vr b-a = 25 (metres)				
Vr b-c = 25 (metres)				
q b-a = 75 (pcu/hr)				
q b-c = 92 (pcu/hr)				


	PRIORITY JUNC	CTION CALCULATION			INIT	TALS	DATE
Demolition of Existing Superstructure at Caroline Hill Road Site - Tra	ffic Impact Assesment	PROJECT NO.:	2531052A	PREPARED BY:	ł	M	Nov-16
J6 - Cotton path / Eastern Hospital Road / Tung Lo Wan Road	Reference Flow - 2019 FOREC	CAST TRAFFIC (PM)		CHECKED BY:		AL.	Nov-16
				REVIEWED BY:	1	w	Nov-16

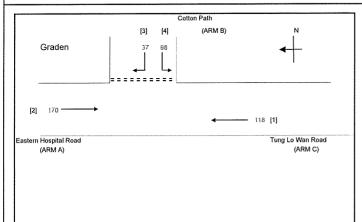
NOTES: (GEOMETRIC INPUT DATA) W = MAJOR ROAD WIDTH Wcr = CENTRAL RESERVE WIDTH Wb-a = LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-a W b-c = LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-c LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM c-b W c-b = VISIBILITY TO THE LEFT FOR VEHICLES WAITING IN STREAM b-a VIb-a = VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a Vrb-c = VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM c-b Vrc-b = D = STREAM-SPECIFIC B-A E = STREAM-SPECIFIC B-C F = STREAM-SPECIFIC C-B (1-0.0345W)

METRIC DETAILS:	GEOMETRIC FACTORS:	THE CAPACITY OF MOVEMENT :	COMPARISION OF DESIGN FLOW TO CAPACITY:	
MAJOR ROAD (ARM A)				
W = 4.00 (metres)	D = 1.2671987	Q b-a = 697	DFC b-a = 0.0531	
W cr = 0 (metres)	E = 1,3744021	Q b-c = 951 Q b-c (O) = 938.4	DFC b-c = 0.0936	
q a-b = 0 (pcu/hr)	F = 0.5859548	Q c-b = 405	DFC c-b = 0.0000	
q a-c = 170 (pcu/hr)	Y = 0.862	Q b-ac = 859		
MAJOR ROAD (ARM C)	F for (Qb-ac) = 0.7063492	TOTAL FLOW = 414 (PCU/HR)		
W c-b = (metres)				
Vr c-b = (metres)				
q c-a = 118 (pcu/hr)				
q c-b = 0 (pcu/hr)				
			CRITICAL DFC = 0.09	
MINOR ROAD (ARM B)				
W b-a = 9.00 (metres)				
W b-c = 9.00 (metres)				
VI b-a = 20 (metres)				
Vr b-a = 25 (metres)				
Vr b-c = 25 (metres)				
q b-a = 37 (pcu/hr)				
q b-c = 89 (pcu/hr)				

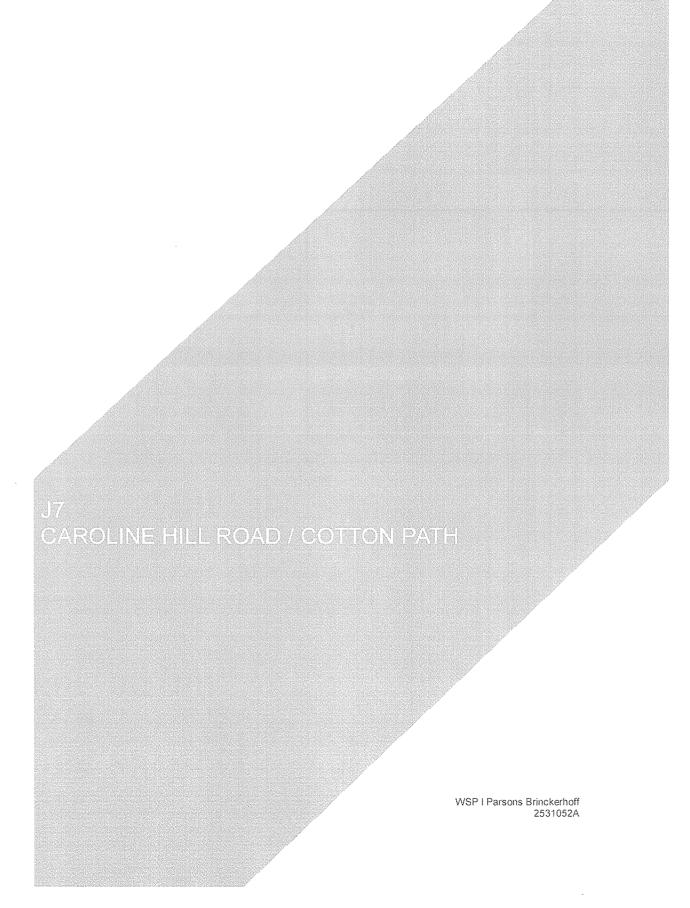

		INITIALS	DATE			
Demolition of Existing Superstructure at Caroline Hill Road Site - Tr	affic Impact Assesment	PROJECT NO.:	2531052A	PREPARED BY:	км	Nov-16
J6 - Cotton path / Eastern Hospital Road / Tung Lo Wan Road	Design Flow (Construction) - 20	19 FORECAST TRAFFIC (AM)		CHECKED BY:	AL	Nov-16
				REVIEWED BY:	cw	Nov-16

NOTES: (GEOMETRIC INPUT DATA) W = MAJOR ROAD WIDTH CENTRAL RESERVE WIDTH Wcr= LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-a W b-a = LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-c W b-c = LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM c-b W c-b = VIb-a = VISIBILITY TO THE LEFT FOR VEHICLES WAITING IN STREAM b-a VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a Vrb-a = VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c Vrb-c = Vrc-b = VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM c-b D = STREAM-SPECIFIC B-A STREAM-SPECIFIC B-C E = F = STREAM-SPECIFIC C-B (1-0.0345W)

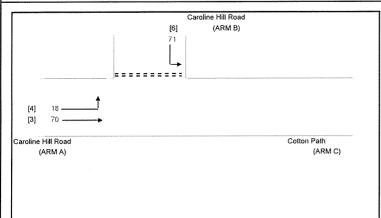
DMETRIC DETAILS:	GEOMETRIC FACTORS:	THE CAPACITY OF MOVEMENT:	COMPARISION OF DESIGN FLOW TO CAPACITY:	
MAJOR ROAD (ARM A)				
W = 4.00 (metres)	D = 1.2671987	Q b-a = 695	DFC b-a =	0.0590
W cr = 0 (metres)	E = 1.3744021	Q b-c = 961 Q b-c (O) = 946.8	DFC b-c =	0,1176
q a-b = 0 (pcu/hr)	F = 0.5859548	Q c-b = 410	DFC c-b =	0.0000
q a-c = 145 (pcu/hr)	Y = 0.862	Q b-ac = 872		
MAJOR ROAD (ARM C)	F for (Qb-ac) = 0.7337662	TOTAL FLOW = 466 (PCU/HR)		
W c-b = (metres)				
Vr c-b = (metres)				
q c-a = 167 (pcu/hr)				
q c-b = 0 (pcu/hr)				
			CRITICAL DFC	= 0.12
MINOR ROAD (ARM B)				
W b-a = 9.00 (metres)				
W b-c = 9.00 (metres)				
VI b-a = 20 (metres)				
Vr b-a = 25 (metres)				
Vr b-c = 25 (metres)				
q b-a = 41 (pcu/hr)				
q b-c = 113 (pcu/hr)				


	PRIORITY JUNC	PRIORITY JUNCTION CALCULATION					
Demolition of Existing Superstructure at Caroline Hill Road Site - Tra	affic Impact Assesment	PROJECT NO.:	2531052A	PREPARED BY:	КМ	Nov-16	
J6 - Cotton path / Eastern Hospital Road / Tung Lo Wan Road	Design Flow (Construction) - 20	19 FORECAST TRAFFIC (Noon)		CHECKED BY:	AL	Nov-16	
				REVIEWED BY:	cw	Nov-16	

NOTES: (GEOMETRIC INPUT DATA) W = MAJOR ROAD WIDTH W cr = CENTRAL RESERVE WIDTH LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-a W b-a = LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-c Wb-c = W c-b = LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM c-b VISIBILITY TO THE LEFT FOR VEHICLES WAITING IN STREAM b-a VIb-a ≃ Vr b-a = VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c Vrb-c = Vrc-b = VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM c-b STREAM-SPECIFIC B-A STREAM-SPECIFIC B-C E = F = STREAM-SPECIFIC C-B (1-0.0345W)

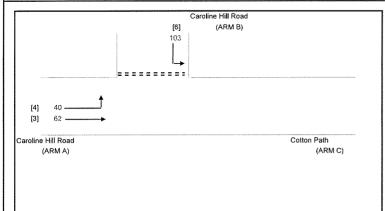

METRIC DETAILS:	GEOMETRIC FACTORS :	THE CAPACITY OF MOVEMENT:	COMPARISION OF DESIGN FLOW TO CAPACITY:
MAJOR ROAD (ARM A)			
W = 4.00 (metres)	D = 1.2671987	Q b-a = 678	DFC b-a = 0.1106
W cr = 0 (metres)	E = 1.3744021	Q b-c = 945 Q b-c (O) = 918.9	DFC b-c = 0.1069
q a-b = 0 (pcu/hr)	F = 0.5859548	Q c-b = 403	DFC c-b = 0.0000
q a-c = 184 (pcu/hr)	Y = 0.862	Q b-ac = 809	
MAJOR ROAD (ARM C)	F for (Qb-ac) = 0.5738636	TOTAL FLOW = 535 (PCU/HR)	
W c-b = (metres)			
Vr c-b = (metres)			
q c-a = 175 (pcu/hr)			
q c-b = 0 (pcu/hr)			
			CRITICAL DFC = 0.11
MINOR ROAD (ARM B)			
W b-a = 9.00 (metres)			
W b-c = 9.00 (metres)			
VI b-a = 20 (metres)			
Vr b-a = 25 (metres)			
Vr b-c = 25 (metres)			
q b-a = 75 (pcu/hr)			
q b-c = 101 (pcu/hr)			

	PRIORITY JUNC	PRIORITY JUNCTION CALCULATION					
Demolition of Existing Superstructure at Caroline Hill Road Site - T	raffic Impact Assesment	PROJECT NO.:	2531052A	PREPARED BY:	км	Nov-16	
J6 - Cotton path / Eastern Hospital Road / Tung Lo Wan Road	Design Flow (Construction) - 20	019 FORECAST TRAFFIC (PM)		CHECKED BY:	AL	Nov-16	
				REVIEWED BY:	cw	Nov-16	



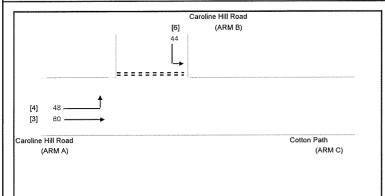
NOTES: (GEOMETRIC INPUT DATA) W = MAJOR ROAD WIDTH W cr = CENTRAL RESERVE WIDTH LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-a W b-c = LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-c W c-b = LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM c-b VIb-a = VISIBILITY TO THE LEFT FOR VEHICLES WAITING IN STREAM b-a VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a Vrb-a = VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c Vrb-c = VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM c-b Vrc-b = D = STREAM-SPECIFIC B-A E = STREAM-SPECIFIC B-C F = STREAM-SPECIFIC C-B Y = (1-0.0345W)

OMETRIC DETAILS:	GEOMETRIC FACTORS:	THE CAPACITY OF MOVEMENT:	COMPARISION OF DESIGN FLOW TO CAPACITY:
MAJOR ROAD (ARM A)			
W = 4.00 (metres)	D = 1.2671987	Q b-a = 697	DFC b-a = 0.0531
W cr = 0 (metres)	E = 1,3744021	Q b-c = 951 Q b-c (O) = 938.4	DFC b-c = 0.1030
q a-b = 0 (pcu/hr)	F = 0.5859548	Q c-b = 405	DFC c-b = 0.0000
q a-c = 170 (pcu/hr)	Y = 0.862	Q b-ac = 865	
MAJOR ROAD (ARM C)	F for (Qb-ac) = 0.7259259	TOTAL FLOW = 423 (PCU/HR)	
W c-b = (metres)			
Vr c-b = (metres)			
q c-a = 118 (pcu/hr)			
$q c-b = 0 ext{ (pcu/hr)}$			
			CRITICAL DFC = 0.10
MINOR ROAD (ARM B)			
W b-a = 9.00 (metres)			
W b-c = 9.00 (metres)			•
VI b-a = 20 (metres)			
Vr b-a = 25 (metres)			
Vr b-c ≈ 25 (metres)			
q b-a = 37 (pcu/hr)			
q b-c = 98 (pcu/hr)			


	PRIORITY JUNC	TION CALCULATION			INITIALS	DATE
Demolition of Existing Superstructure at Caroline Hill Ro	oad Site - Traffic Impact Assesment	PROJECT NO.:	2531052A	PREPARED BY:	KM	Nov-16
J7 - Caroline Hill Road / Cotton Path	Reference Flow - 2016 EXISTIN	IG TRAFFIC (AM)		CHECKED BY:	AL	Nov-16
				REVIEWED BY:	cw	Nov-16

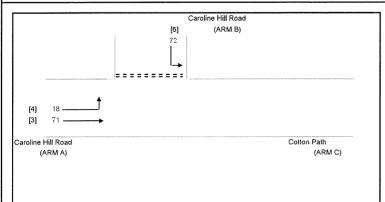
NOTES: (GEOMETRIC INPUT DATA) MAJOR ROAD WIDTH W = Wcr = CENTRAL RESERVE WIDTH LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-a W b-a = W b-c = LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-c W c-b = LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM c-b VISIBILITY TO THE LEFT FOR VEHICLES WAITING IN STREAM b-a VIb-a = VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a Vrb-a = VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c Vr c-b = VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM c-b D = STREAM-SPECIFIC B-A E = STREAM-SPECIFIC B-C F = STREAM-SPECIFIC C-B (1-0.0345W)

ETRIC DETAILS:		GEOMETRIC FAC	TORS:		THE CAPACITY OF MC	VEME	NT:		COMPARISION OF DESIGN FLOW TO CAPACITY:		
MAJOR ROAD (ARM A)											
W = 7.50 (1	metres)	D	=	0.9610564	Q b-a =	583			DFC b-a	==	0.000,0
W cr = 0 (metres)	E	=	0.8628491	Q b-c =	625	Q b-c (O) =	625	DFC b-c	=	0.1136
qa-b = 18 (pcu/hr)	F	=	0.5859548	Q c-b =	423			DFC c-b	===	0.0000
q a-c = 70 (pcu/hr)	Υ	=	0,74125	Q b-ac =	625			DFC b-c (share lane) =	0.1136
MAJOR ROAD (ARM C)		F for (Qb-	ac) =	1	TOTAL FLOW	=	159	(PCU/HR)			
W c-b = 0.00 (metres)										
Vrc-b = 0 (metres)										
q c-a = 0 (pcu/hr)										
q c-b = 0 (pcu/hr)										
									CRITICAL DFC	=	0.11
MINOR ROAD (ARM B)											
W b-a = 5.00 (r	metres)										
W b-c = 3.00 (i	metres)										
VI b-a = 30 (i	metres)										
Vr b-a = 30 (i	metres)										
Vrb-c = 30 (i	metres)										
q b-a = 0 (pcu/hr)										
	pcu/hr)										


	PRIORITY JUNC	PRIORITY JUNCTION CALCULATION						
Demolition of Existing Superstructure at Caroline Hill Ro	oad Site - Traffic Impact Assesment	PROJECT NO.:	2531052A	PREPARED BY:	КМ	Nov-16		
J7 - Caroline Hill Road / Cotton Path	Reference Flow - 2016 EXISTIN	G TRAFFIC (Noon)		CHECKED BY:	AL	Nov-16		
				REVIEWED BY:	cw	Nov-16		

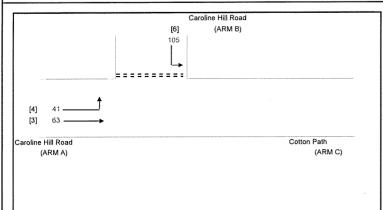
NOTES: (GEOMETRIC INPUT DATA) W = MAJOR ROAD WIDTH W cr = CENTRAL RESERVE WIDTH W b-a = LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-a LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-c W c-b = LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM c-b VIb-a = VISIBILITY TO THE LEFT FOR VEHICLES WAITING IN STREAM b-a Vrb-a = VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c Vr b-c = VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM c-b Vr c-b = D = STREAM-SPECIFIC B-A E = STREAM-SPECIFIC B-C F = STREAM-SPECIFIC C-B Y = (1-0.0345W)

METRIC DETAIL	.S:		GEOMETRIC FA	CTORS:		THE CAPACITY OF MO	VEMEN	IT:		COMPARISION OF DESIGN FLOW TO CAPACITY:		
MAJOR ROA	D (ARM A)											
w =	7.50	(metres)	D	=	0.9610564	Q b-a =	582			DFC b-a	=	0.0000
W cr =	0	(metres)	E	=	0.8628491	Q b-c =	625	Q b-c (O) =	625	DFC b-c	=	0.1648
qa-b =	40	(pcu/hr)	F	=	0.5859548	Q c-b =	420			DFC c-b	=	0.0000
q a-c =	62	(pcu/hr)	Υ	=	0.74125	Q b-ac =	625			DFC b-c (share lane)	=	0.1648
MAJOR ROA	D (ARM C)		F for (Qt	o-ac) =	1	TOTAL FLOW	= :	205	(PCU/HR)			
W c-b =	0.00	(metres)										
Vrc-b =	0	(metres)										
q c-a =	0	(pcu/hr)										
q c-b =	0	(pcu/hr)										
										CRITICAL DFC	=	0.16
MINOR ROAL	(ARM B)											
W b-a =	5.00	(metres)										
W b-c =	3,00	(metres)										
VI b-a =	30	(metres)										
Vrb-a ≕	30	(metres)										
Vr b-c =	30	(metres)										
q b-a =	0	(pcu/hr)										
q b-c =	103	(pcu/hr)										


	PRIORITY JUNC	PRIORITY JUNCTION CALCULATION					
Demolition of Existing Superstructure at Caroline Hill	Road Site - Traffic Impact Assesment	PROJECT NO.:	2531052A	PREPARED BY:	KM	Nov-16	
J7 - Caroline Hill Road / Cotton Path	Reference Flow - 2016 EXISTIN	G TRAFFIC (PM)		CHECKED BY:	AL	Nov-16	
				REVIEWED BY:	cw	Nov-16	

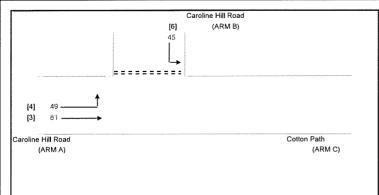
NOTES: (GEOMETRIC INPUT DATA) MAJOR ROAD WIDTH w = CENTRAL RESERVE WIDTH W cr = Wb-a = LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-a LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-c LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM c-b W c-b = VIb-a = VISIBILITY TO THE LEFT FOR VEHICLES WAITING IN STREAM b-a VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a Vrb-a = VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c Vr b-c = VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM C-b Vrc-b = D = STREAM-SPECIFIC B-A E = STREAM-SPECIFIC B-C F = STREAM-SPECIFIC C-B Y = (1-0.0345W)

OMETRIC DETAIL	.S:		GEOMETRIC FA	CTORS:		THE CAPACITY OF MC	VEME	NT:		COMPARISION OF DESIGN FLOW TO CAPACITY:		
MAJOR ROA	D (ARM A)											
w =	7.50	(metres)	D	=	0.9610564	Q b-a =	577			DFC b-a	=	0.0000
W cr =	0	(metres)	E	=	0.8628491	Q b-c =	620	Q b-c (O) =	620	DFC b-c	=	0.0710
qa-b =	48	(pcu/hr)	F	=	0.5859548	Q c-b =	416			DFC c-b	=	0.0000
qa-c =	80	(pcu/hr)	Υ	=	0.74125	Q b-ac =	620			DFC b-c (share lane	=	0,0710
MAJOR ROAE	(ARM C)		F for (Qt	-ac) =	1	TOTAL FLOW	=	172	(PCU/HR)			
W c-b =	0.00	(metres)										
Vr c-b =	0	(metres)										
q c-a =	0	(pcu/hr)										
q c-b =	0	(pcu/hr)										
										CRITICAL DFC	=	0.07
MINOR ROAD	(ARM B)											
W b-a =	5.00	(metres)										
W b-c =	3.00	(metres)										
VI b-a =	30	(metres)										
Vrb-a =	30	(metres)										
Vr b-c =	30	(metres)										
q b-a =	0	(pcu/hr)										
q b-c =	44	(pcu/hr)										


	PRIORITY JUNCTION CALCULATION						
Demolition of Existing Superstructure at Caroline Hill F	Road Site - Traffic Impact Assesment	PROJECT NO.:	2531052A	PREPARED BY:	KM	Nov-16	
J7 - Caroline Hill Road / Cotton Path	Reference Flow - 2019 FORECA	AST TRAFFIC (AM)		CHECKED BY:	AL	Nov-16	
				REVIEWED BY:	cw	Nov-16	

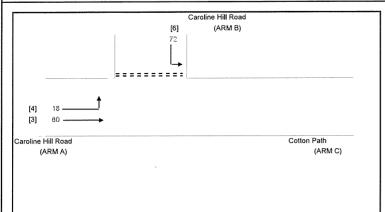
NOTES: (GEOMETRIC INPUT DATA) W = MAJOR ROAD WIDTH CENTRAL RESERVE WIDTH W cr = W b-a = LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-a LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-c W b-c = LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM c-b W c-b = VISIBILITY TO THE LEFT FOR VEHICLES WAITING IN STREAM b-a VIb-a ≕ Vrb-a ≔ VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a Vrb-c ≃ VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM c-b Vrc-b = D = STREAM-SPECIFIC B-A E = STREAM-SPECIFIC B-C F = STREAM-SPECIFIC C-B (1-0.0345W)

METRIC DETAILS:		GEOMETRIC FACTORS		THE CAPACITY OF MO	OVEMENT:		COMPARISION OF DESIGN FLOW TO CAPACITY:		
MAJOR ROAD (ARM	A)		•						
W = 7.5	0 (metres)	D =	0,9610564	Q b-a =	582		DFC b-a	=	0.0000
W cr = ((metres)	E =	0.8628491	Q b-c =	625 Q b-	(O) = 625	DFC b-c	=	0.1152
q a-b = 1	8 (pcu/hr)	F =	0.5859548	Q c-b =	422		DFC c-b	=	0.0000
q a-c = 7	1 (pcu/hr)	Υ =	0.74125	Q b-ac =	625		DFC b-c (share lane)	=	0.1152
MAJOR ROAD (ARM	C)	F for (Qb-ac) =	: 1	TOTAL FLOW	= 161	(PCU/HR)			
W c-b = 0.0	0 (metres)								
Vrc-b =	(metres)								
q c-a = ((pcu/hr)								
q c-b = ((pcu/hr)								
							CRITICAL DFC	=	0.12
MINOR ROAD (ARM	B)								
W b-a = 5.0	0 (metres)								
W b-c = 3.0	0 (metres)								
VI b-a = 30	(metres)								
Vrb-a = 30	(metres)								
Vr b-c = 30	(metres)								
q b-a =	0 (pcu/hr)								
	2 (pcu/hr)								


	PRIORITY JUNCTION CALCULATION						
Demolition of Existing Superstructure at Caroline Hill	Road Site - Traffic Impact Assesment	raffic Impact Assesment PROJECT NO.: 2531052A PREPARED I					
J7 - Caroline Hill Road / Cotton Path	Reference Flow - 2019 FORECA	AST TRAFFIC (Noon)		CHECKED BY:	AL	Nov-16	
				REVIEWED BY:	cw	Nov-16	

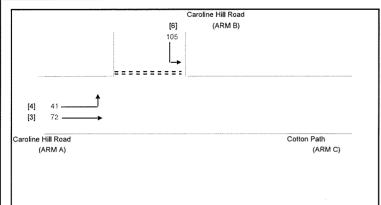
NOTES: (GEOMETRIC INPUT DATA) MAJOR ROAD WIDTH w = CENTRAL RESERVE WIDTH Wcr = LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-a W b-a = LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-c W b-c = LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM c-b W c-b = VISIBILITY TO THE LEFT FOR VEHICLES WAITING IN STREAM b-a VIb-a = VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a Vrb-a = VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c Vr b-c = Vrc-b = VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM c-b D = STREAM-SPECIFIC B-A STREAM-SPECIFIC B-C E = F = STREAM-SPECIFIC C-B Y = (1-0.0345W)

METRIC DETAIL	.s:		GEOMETRIC F	ACTORS	:	THE CAPACITY OF MC	VEME	NT:		COMPARISION OF DESIGN FLOW TO CAPACITY:		
MAJOR ROA	D (ARM A)											
w =	7.50	(metres)	Ω	=	0,9610564	Q b-a =	582			DFC b-a	=	0.0000
W cr =	0	(metres)	E	=	0.8628491	Q b-c =	624	Q b-c (O) =	624	DFC b-c	=	0.1683
q a-b =	41	(pcu/hr)	F	=	0.5859548	Q c-b =	420			DFC c-b	=	0.0000
qa-c =	63	(pcu/hr)	Y	=	0.74125	Q b-ac =	624			DFC b-c (share lane) =	0.1683
MAJOR ROAL	(ARM C)		F for (C	1b-ac) =	1	TOTAL FLOW	=	209	(PCU/HR)			
W c-b =	0.00	(metres)										
Vrc-b =	0	(metres)										
qc-a=	Ō	(pcu/hr)										
q c-b =	0	(pcu/hr)										
										CRITICAL DFC	===	0.17
MINOR ROAD	(ARM B)											
W b-a =	5.00	(metres)										
W b-c =	3.00	(metres)										
VIb-a =	30	(metres)										
Vrb-a ≃	30	(metres)										
Vr b-c =	30	(metres)										
q b-a =	0	(pcu/hr)										
q b-c =	105	(pcu/hr)										


	PRIORITY JUNC	TION CALCULATION			INITIALS	DATE
Demolition of Existing Superstructure at Caroline Hill F	Road Site - Traffic Impact Assesment	PROJECT NO.:	2531052A	PREPARED BY:	KM	Nov-16
J7 - Caroline Hill Road / Cotton Path	Reference Flow - 2019 FORECA	ST TRAFFIC (PM)		CHECKED BY:	AL	Nov-16
				REVIEWED BY:	cw	Nov-16

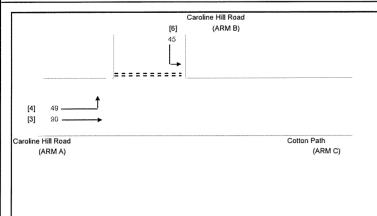
NOTES: (GEOMETRIC INPUT DATA) W = MAJOR ROAD WIDTH Wcr = CENTRAL RESERVE WIDTH W b-a = LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-a W b-c = LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-c W c-b = LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM c-b VIb-a = VISIBILITY TO THE LEFT FOR VEHICLES WAITING IN STREAM b-a VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a Vrb-a = Vrb-c = VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c Vrc-b = VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM c-b D = STREAM-SPECIFIC B-A E = STREAM-SPECIFIC B-C F = STREAM-SPECIFIC C-B Y = (1-0.0345W)

METRIC DETAIL	S:		GEOMETRIC FA	CTORS:		THE CAPACITY OF M	IOVEME	NT:		COMPARISION OF DESIGN FLOW TO CAPACITY:		
MAJOR ROA	D (ARM A)	ı										
W =	7,50	(metres)	D	=	0.9610564	Q b-a =	577			DFC b-a	=	0.000
W cr =	0	(metres)	É	=	0.8628491	Q b-c =	619	Q b-c (O) =	619	DFC b-c	=	0.0727
qa-b =	49	(pcu/hr)	F	=	0.5859548	Q c-b =	416			DFC c-b	=	0.0000
q a-c =	81	(pcu/hr)	Υ	=	0.74125	Q b-ac =	619			DFC b-c (share lane)	=	0.0727
MAJOR ROAI	(ARM C)		F for (QI	o-ac) =	1	TOTAL FLOV	/ =	175	(PCU/HR)			
W c-b =	0.00	(metres)										
Vrc-b ≈	0	(metres)										
q c-a =	0	(pcu/hr)										
q c-b =	0	(pcu/hr)										
										CRITICAL DFC	=	0.07
MINOR ROAL	(ARM B)											
W b-a =	5.00	(metres)										
W b-c =	3.00	(metres)										
VI b-a =	30	(metres)										
Vrb-a =	30	(metres)										
Vr b-c =	30	(metres)										
q b-a =	0	(pcu/hr)										
q b-c =	45	(pcu/hr)										

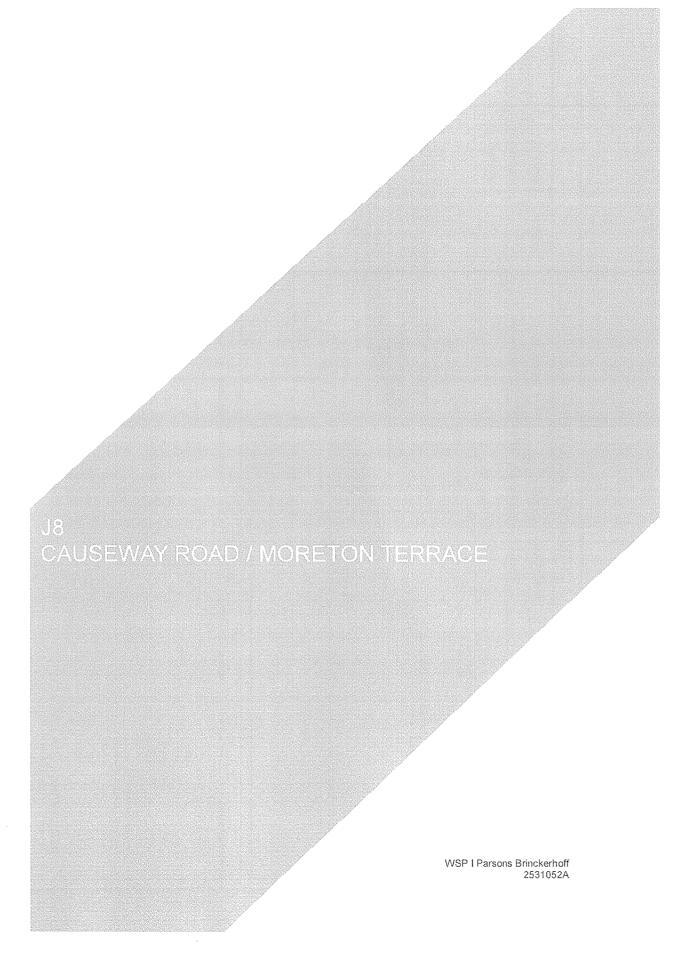

	PRIORITY JUNC	TION CALCULATION			INITIALS	DATE
Demolition of Existing Superstructure at Caroline Hill R	oad Site - Traffic Impact Assesment	PROJECT NO.:	2531052A	PREPARED BY:	KM	Nov-16
J7 - Caroline Hill Road / Cotton Path	Design Flow (Construction) - 20	19 FORECAST TRAFFIC (AM)		CHECKED BY:	AL	Nov-16
				REVIEWED BY:	cw	Nov-16

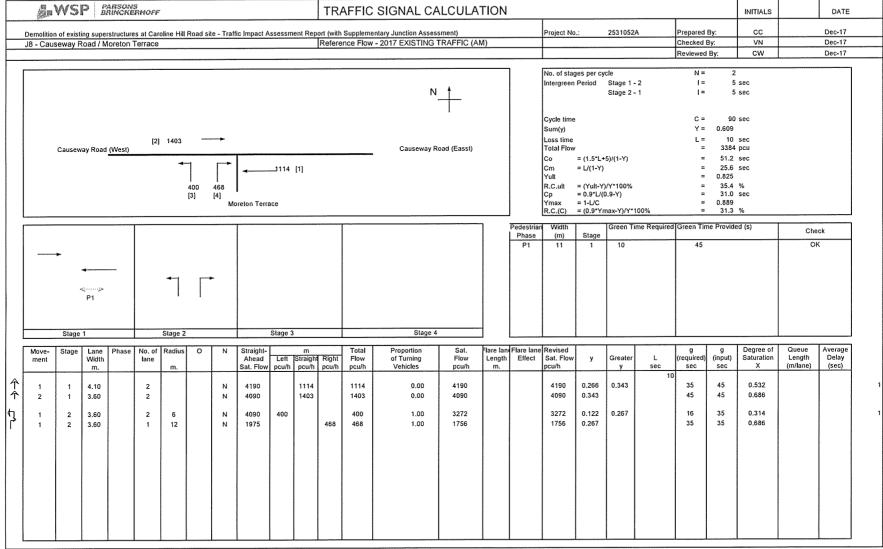
NOTES: (GEOMETRIC INPUT DATA) MAJOR ROAD WIDTH w = CENTRAL RESERVE WIDTH LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-a W b-a = LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-c W b-c = W c-b = LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM c-b VISIBILITY TO THE LEFT FOR VEHICLES WAITING IN STREAM b-a VIb-a = VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a Vrb-a = VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c Vr b-c = Vrc-b = VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM c-b D = STREAM-SPECIFIC B-A STREAM-SPECIFIC B-C F = STREAM-SPECIFIC C-B Y = (1-0.0345W)

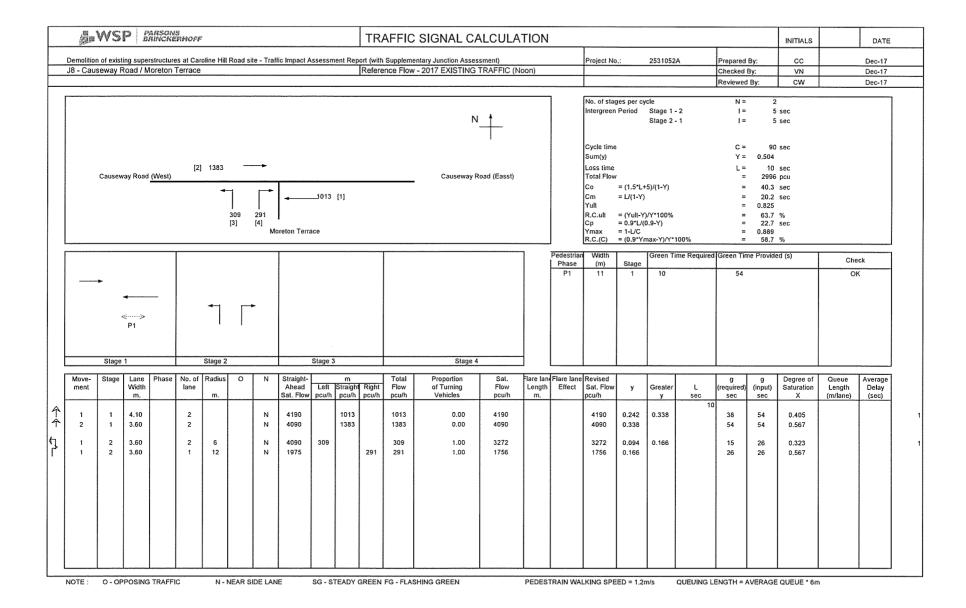
METRIC DETAIL	S:		GEOMETRIC FA	CTORS:		THE CAPACITY OF MC	VEME	NT:		COMPARISION OF DESIGN FLOW TO CAPACITY:		
MAJOR ROA	D (ARM A)	ı										
w =	7.50	(metres)	D	=	0.9610564	Q b-a =	580			DFC b-a	=	0.0000
Wcr =	0	(metres)	E	=	0.8628491	Q b-c =	623	Q b-c (O) =	623	DFC b-c	=	0.1156
qa-b =	18	(pcu/hr)	F	=	0.5859548	Q c-b =	421			DFC c-b	=	0.0000
qa-c =	80	(pcu/hr)	Υ	=	0.74125	Q b-ac =	623			DFC b-c (share lan	e) =	0.1156
MAJOR ROAL	(ARM C)		F for (Qt	o-ac) =	1	TOTAL FLOW	=	170	(PCU/HR)			
W c-b =	0,00	(metres)										
Vrc-b =	0	(metres)										
q c-a =	0	(pcu/hr)										
q c-b =	0	(pcu/hr)										
										CRITICAL DFC	==	0.12
MINOR ROAD	(ARM B)											
W b-a =	5.00	(metres)										
W b-c =	3,00	(metres)										
VIb-a =	30	(metres)										
Vrb-a =	30	(metres)										
Vrb-c =	30	(metres)										
q b-a =	0	(pcu/hr)										
q b-c =		(pcu/hr)										

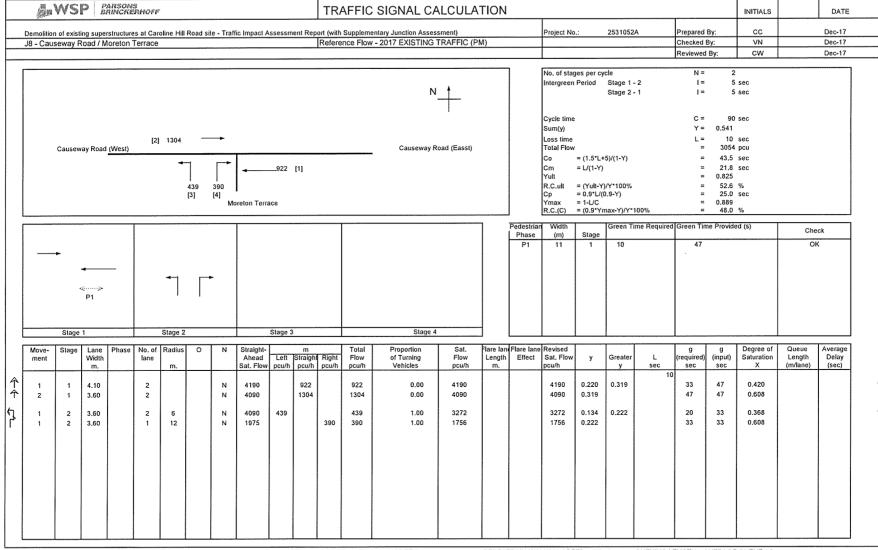

	PRIORITY JUNCTION CALCULATION								
Demolition of Existing Superstructure at Caroline Hill R	oad Site - Traffic Impact Assesment	PF	ROJECT NO.:	2531052A	PREPARED BY:	KM	Nov-16		
J7 - Caroline Hill Road / Cotton Path	Design Flow (Construction) - 201	9 FORECAST 1	TRAFFIC (Noon)		CHECKED BY:	AL	Nov-16		
					REVIEWED BY:	cw	Nov-16		

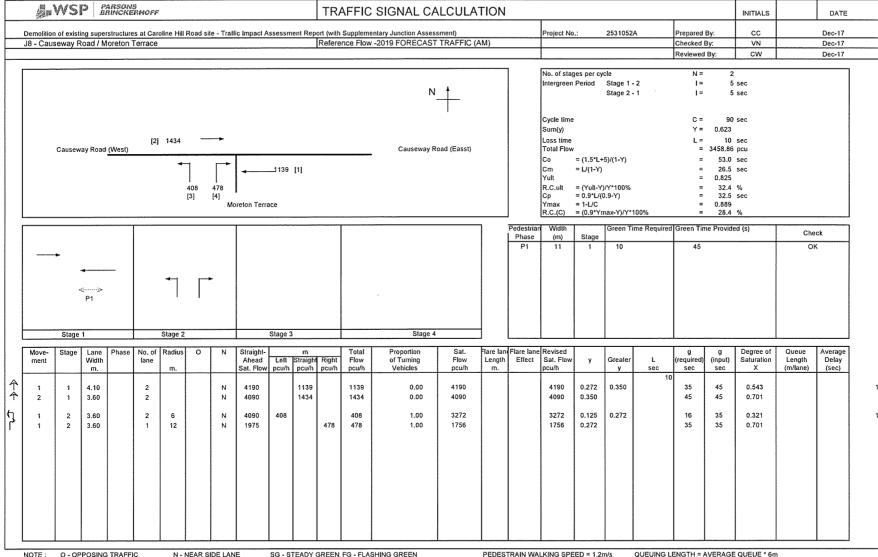
NOTES: (GEOMETRIC INPUT DATA) W = MAJOR ROAD WIDTH CENTRAL RESERVE WIDTH W b-a = LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-a W b-c = LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-c W c-b = LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM c-b VI b-a = VISIBILITY TO THE LEFT FOR VEHICLES WAITING IN STREAM b-a VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a Vrb-a ≕ Vrb-c = VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c Vrc-b = VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM c-b D = STREAM-SPECIFIC B-A E = STREAM-SPECIFIC B-C F = STREAM-SPECIFIC C-B Y = (1-0.0345W)

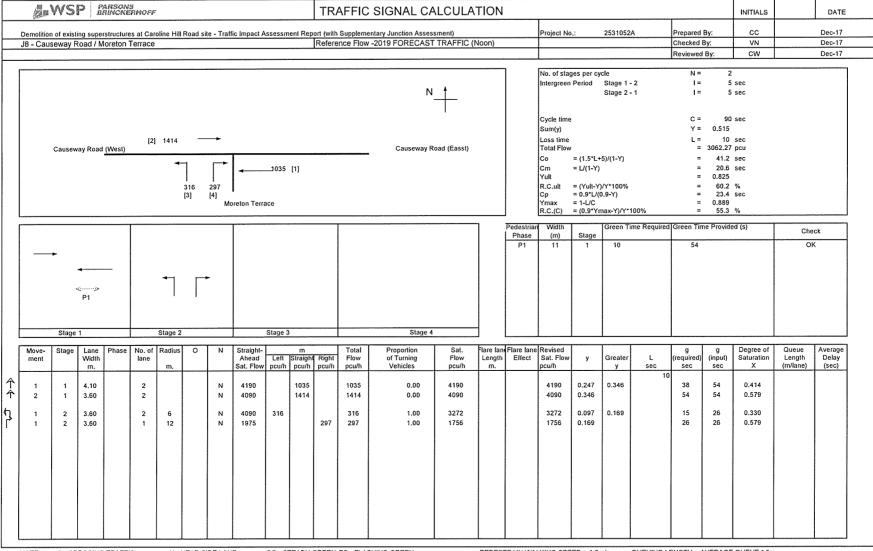

METRIC DETAIL	_S:		GEOMETRIC FAC	TORS:		THE CAPACITY OF MO	VEME	NT:		COMPARISION O TO CAPACITY:	F DESIGN FLOW		
MAJOR ROA	D (ARM A)	•											
w =	7.50	(metres)	D	=	0.9610564	Q b-a =	580				DFC b-a	=	0.0000
W cr =	0	(metres)	E	=	0.8628491	Q b-c =	622	Q b-c (O) =	622		DFC b-c	=	0.1688
qa-b =	41	(pcu/hr)	F	=	0.5859548	Q c-b =	419				DFC c-b	=	0.0000
q a-c =	72	(pcu/hr)	Y	=	0.74125	Q b-ac =	622				DFC b-c (share lane)	=	0.1688
MAJOR ROA	D (ARM C)		F for (Qb-	ac) =	1	TOTAL FLOW	=	218	(PCU/HR)				
W c-b =	0.00	(metres)											
Vr c-b =	0	(metres)											
q c-a =	0	(pcu/hr)											
q c-b =	0	(pcu/hr)											
										CRITICAL	DFC	=	0.17
MINOR ROAL	(ARM B)												
W b-a =	5.00	(metres)											
W b-c =	3,00	(metres)											
VI b-a =	30	(metres)											
Vrb-a =	30	(metres)											
Vrb-c =	30	(metres)											
q b-a =	0	(pcu/hr)											
q b-c =	105	(pcu/hr)											

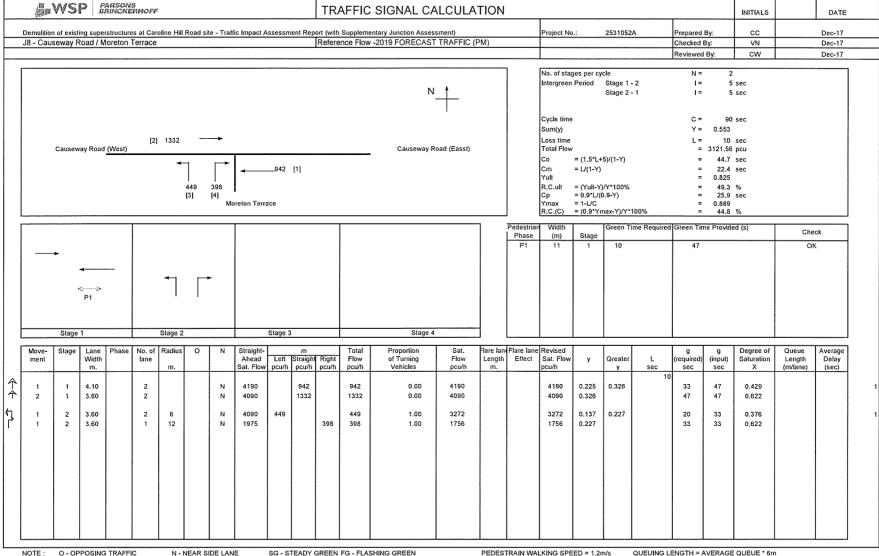

	PRIORITY JUNCTION CALCULATION								
Demolition of Existing Superstructure at Caroline Hill R	oad Site - Traffic Impact Assesment	PROJECT NO.:	2531052A	PREPARED BY:	КМ	Nov-16			
J7 - Caroline Hill Road / Cotton Path	Design Flow (Construction) - 201	9 FORECAST TRAFFIC (PM)		CHECKED BY:	AL	Nov-16			
				REVIEWED BY:	cw	Nov-16			

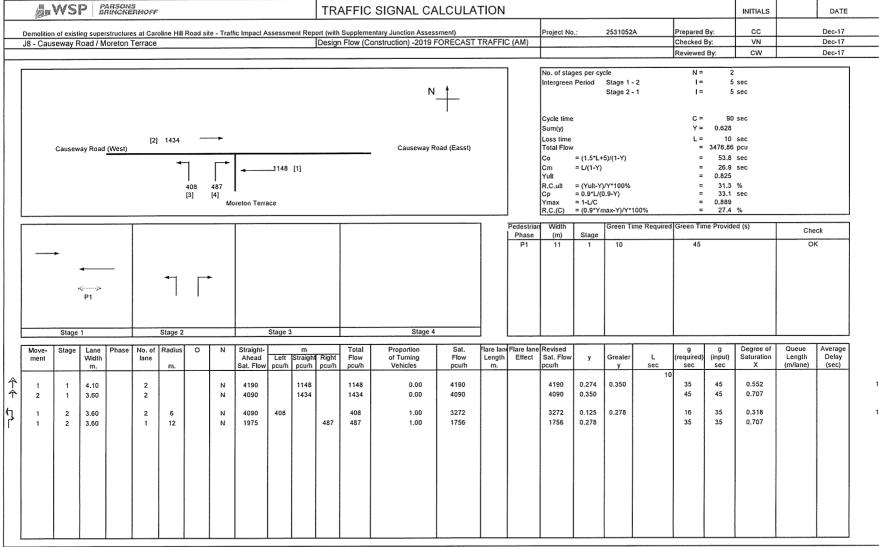


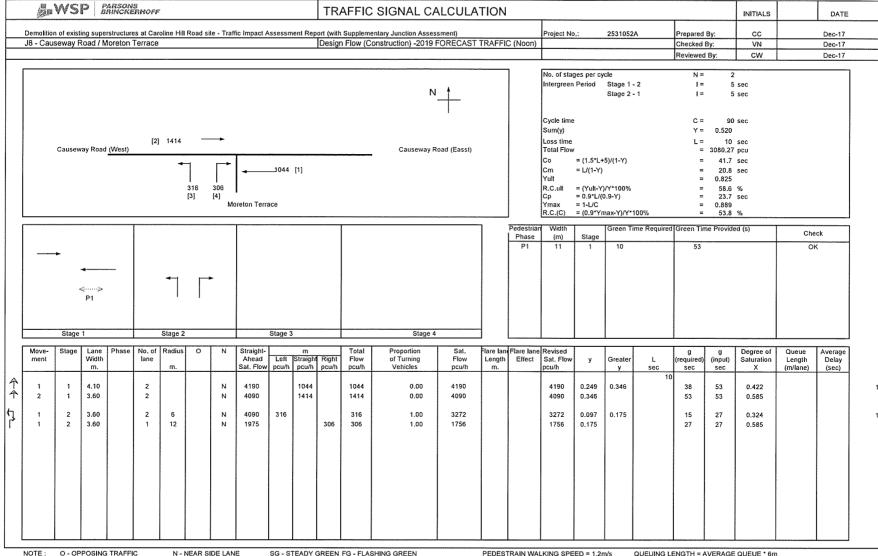

NOTES: (GEOMETRIC INPUT DATA) MAJOR ROAD WIDTH w = CENTRAL RESERVE WIDTH W cr = LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-a W b-a = LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM b-c LANE WIDTH AVAILABLE TO VEHICLE WAITING IN STREAM c-b W c-b = VIb-a ≃ VISIBILITY TO THE LEFT FOR VEHICLES WAITING IN STREAM b-a VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-a Vrb-a = VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM b-c Vrb-c = VISIBILITY TO THE RIGHT FOR VEHICLES WAITING IN STREAM c-b Vrc-b = D = STREAM-SPECIFIC B-A E = STREAM-SPECIFIC B-C F = STREAM-SPECIFIC C-B Y = (1-0.0345W)

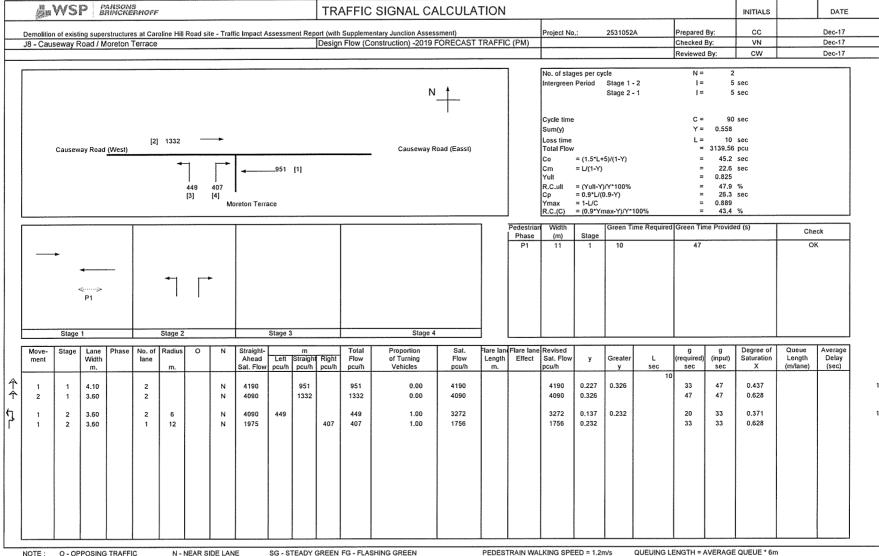

METRIC DETAIL	.S:		GEOMETRIC FA	CTORS	:	THE CAPACITY OF M	OVEME	NT:		COMPARISION OF DESIGN FLOW TO CAPACITY:		
MAJOR ROA	D (ARM A)											
W =	7.50	(metres)	D	=	0.9610564	Q b-a =	574			DFC b-a	=	0.0000
W cr =	0	(metres)	E	=	0.8628491	Q b-c =	617	Q b-c (O) =	617	DFC b-c	=	0.0729
q a-b =	49	(pcu/hr)	F	=	0.5859548	Q c-b =	415			DFC c-b	=	0.0000
q a-c =	90	(pcu/hr)	Y	=	0.74125	Q b-ac =	617			DFC b-c (share lane)	=	0.0729
MAJOR ROAL	(ARM C)		F for (Q	o-ac) =	1	TOTAL FLOW	=	184	(PCU/HR)			
W c-b =	0.00	(metres)										
Vr c-b =	0	(metres)										
q c-a =	0	(pcu/hr)										
q c-b =	0	(pcu/hr)								CRITICAL DFC	=	0.07
MINOR ROAD	(ARM B)									ONTIOAL DI O		0.07
W b-a =	5.00	(metres)										
W b-c =	3.00	(metres)										
VIb-a ≕	30	(metres)										
Vr b-a =	30	(metres)										
Vr b-c =	30	(metres)										
q b-a =	0	(pcu/hr)										
q b-c =	45	(pcu/hr)										

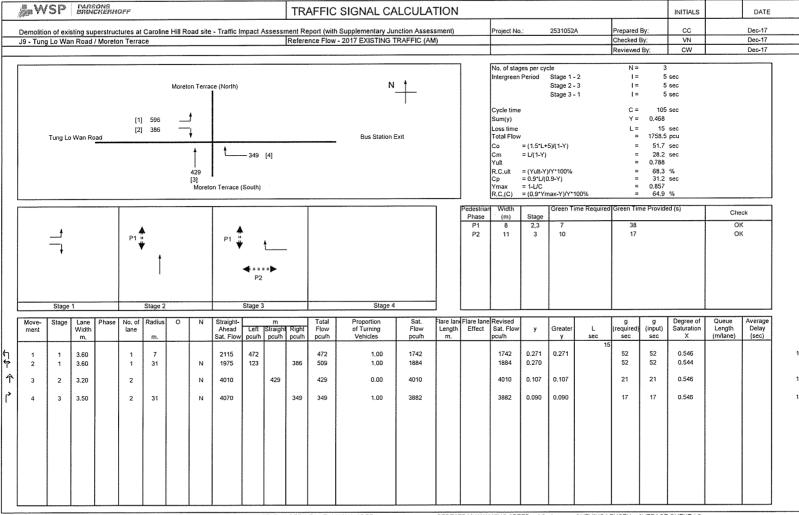


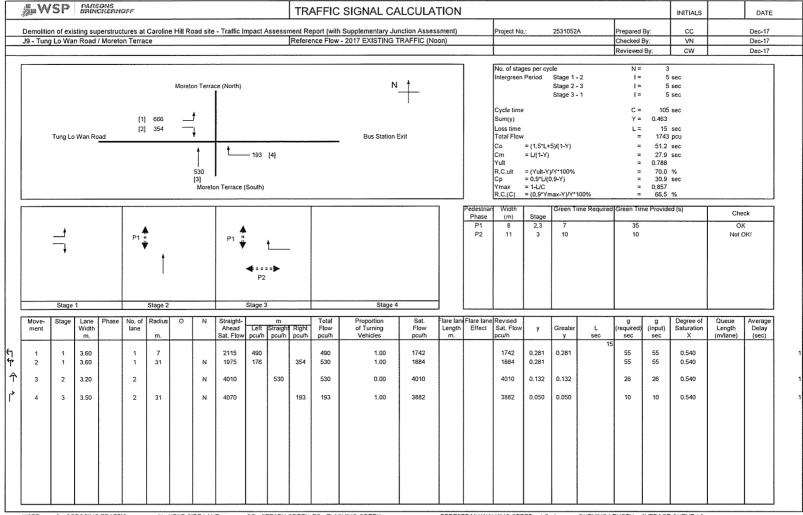


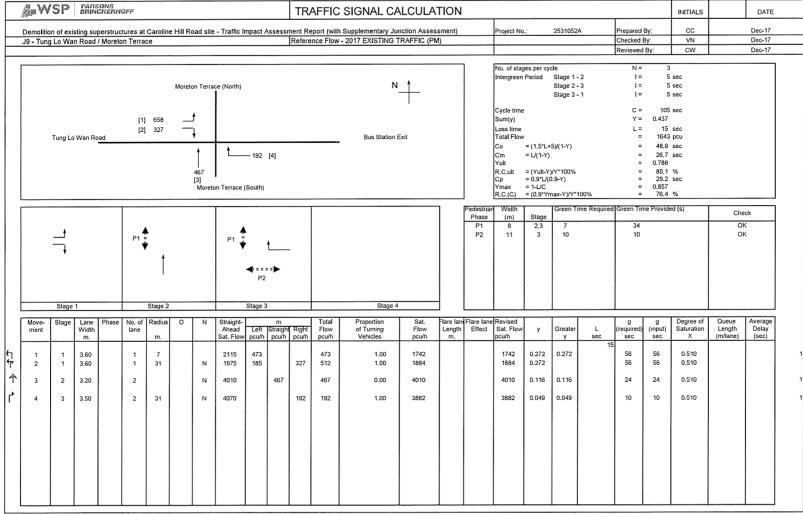


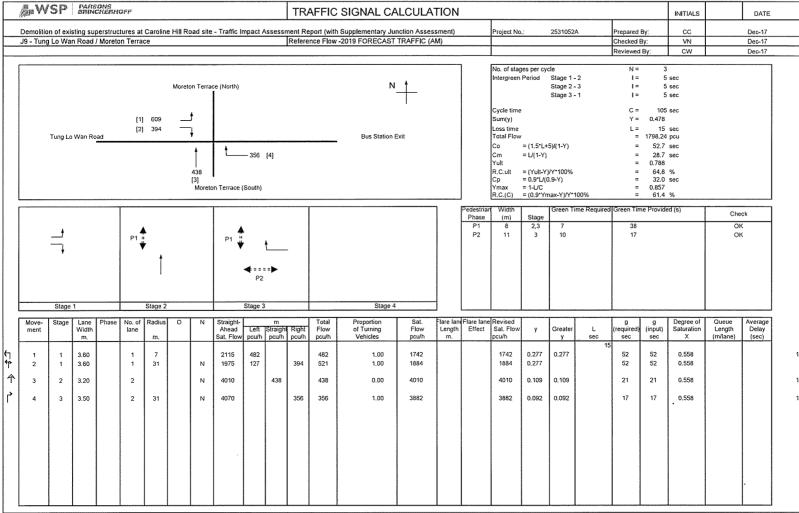


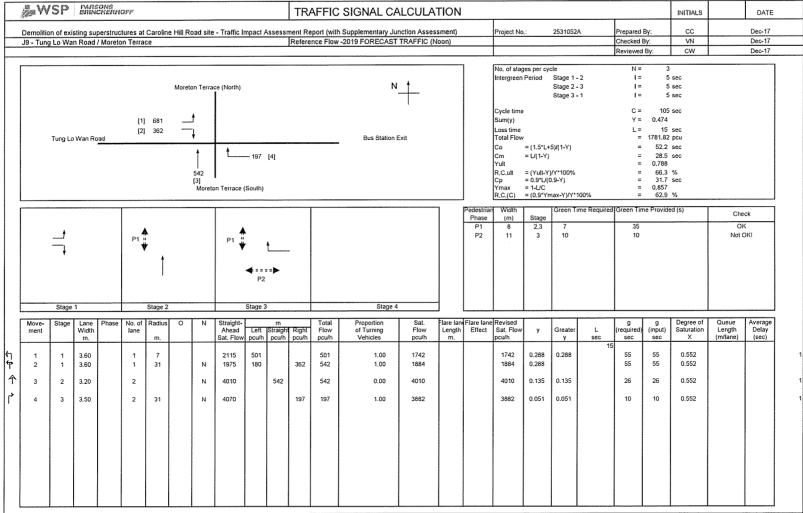


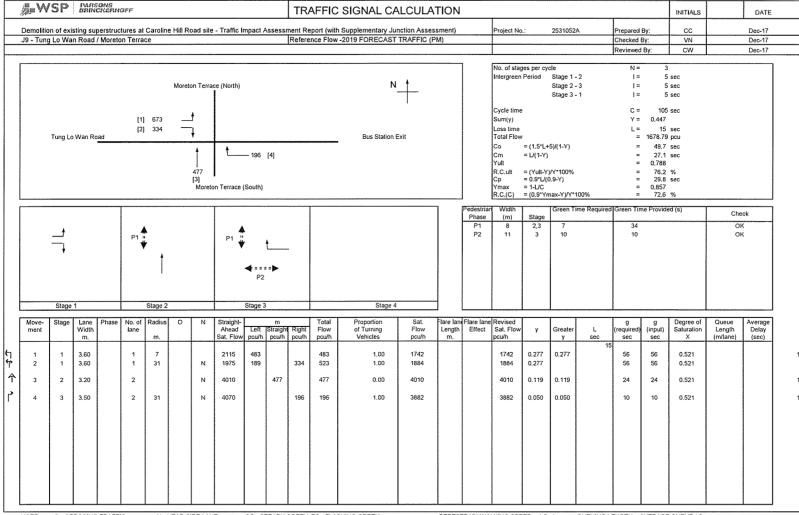


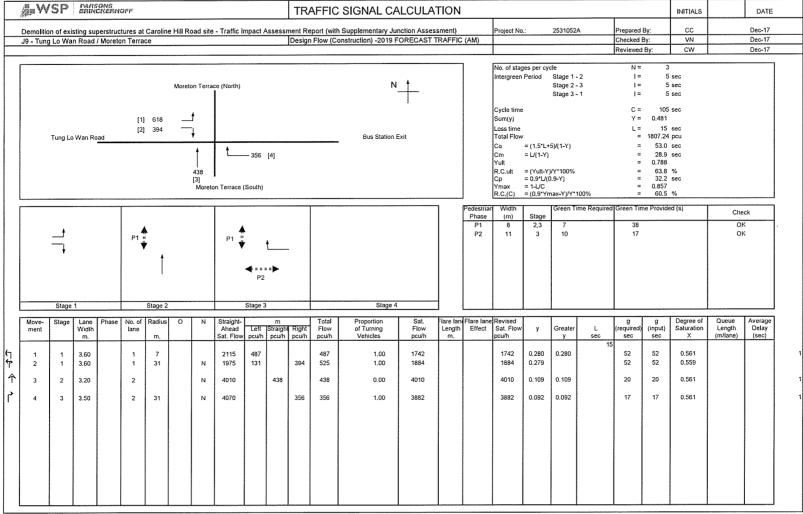


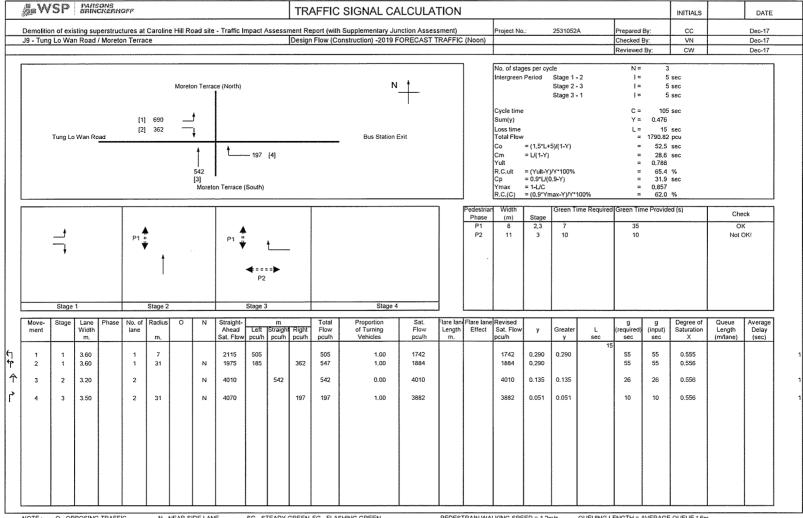

THE DEMOLITION OF EXISTING SUPERSTRUCTURES AT CAROLINE HILL ROAD SITE, CAUSEWAY BAY (PROGRAMME NO. 794CL) - Traffic Impact Assessment (Updated Report)

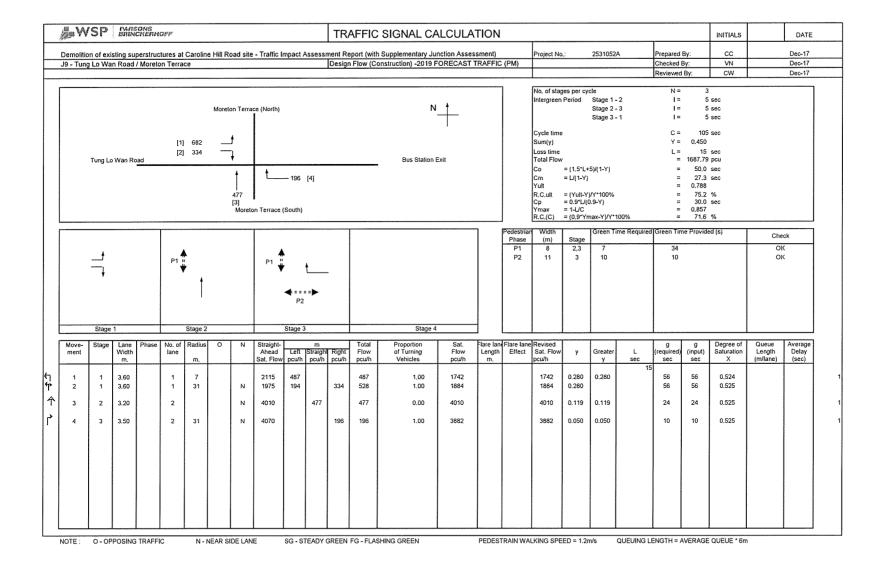

J9
TUNG LO WAN ROAD / MORETON TERRACE


WSP I Parsons Brinckerhoff 2531052A









ABOUT WSP | PARSONS BRINCKERHOFF

WSP and Parsons Brinckerhoff have combined and are now one of the world's leading engineering professional services consulting firms. Together we provide services to transform the built environment and restore the natural environment, and our expertise ranges from environmental remediation to urban planning, from engineering iconic buildings to designing sustainable transport networks, and from developing the energy sources of the future to enabling new ways of extracting essential resources. We have approximately 31,000 employees, including engineers, technicians, scientists, architects, planners, surveyors, program and construction management professionals, and various environmental experts. We are based in more than 500 offices across 39 countries worldwide.

Parsons Brinckerhoff (Asia) Limited 7/F, One Kowloon, 1 Wang Yuen Street Kowloon Bay, Kowloon Hong Kong

Tel: +852 2579 8899 Fax: +852 2856 9902

www.wspgroup.com www.pbworld.com

