CB(1) 572/06-07(02)

本署檔案 OUR REF : EP73/08/182/A34 V 來函檔案 YOUR REF: 電話 TEL NO : 2594 6000 圖文傳真 FAX NO : 2891 2512

Permanent Secretary for the Environment, Transport and Works (Environment) Director of Environmental Protection

> 46th Floor, Revenue Tower 5 Gloucester Road Wan Chai, Hong Kong HOMEPAGE : http://www.epd.gov.hk

環境運輸及工務局 常任秘書長(環境) 環境保護署署長

香港 灣仔告士打道五號 稅務大樓四十六樓 網址:http://www.epd.gov.hk

Hon. Audrey EU Yuet-mee, SC, JP, Room 601, Citibank Tower, 3 Garden Road, Central, Hong Kong.

19 December 2006

Dear Ms Eu,

Harbour Area Treatment Scheme (HATS) Stage 2

I refer to your letter of 8 December 2006 addressed to Dr Liao on the captioned subject. Dr Liao has asked me to reply.

My colleagues have gone through the submission by WWF very carefully and compiled a comprehensive response to each point, where necessary drawing on input from consultants who are conducting the on-going EIA of the Advance Disinfection Facility. This is attached hereto. I would however like to stress a few general issues which are relevant to the submission.

The first and most important point is that it is incorrect to say that the Administration plans to postpone secondary (i.e. biological) treatment for HATS Stage 2 indefinitely. To clarify the position I think it important to recap some of the background.

In 2000 an independent panel of local and international experts reviewed the plans for the HATS and recommended that for the next stage we should aim to provide secondary treatment with a discharge through a short outfall into the harbour, rather than a lower level of treatment coupled with a long outfall discharging into the deep fast-flowing currents of the South China Sea (the former Strategic Sewage Disposal Scheme). The experts suggested a number of engineering configurations for doing this, each of which required further detailed investigation so as to clearly define the pros and cons. Between 2001 and 2004 the suggested options were exhaustively investigated with the work being subject to supervision by the HATS Monitoring Group, a group of local experts and community representatives with an interest in the subject. This group included the three local experts who sat on the independent panel mentioned earlier, namely Dr Albert Koenig (a wastewater treatment expert), Prof Rudolf Wu (an expert in marine biology) and Prof Leonard Cheng (an expert in economics).

During the course of the studies conducted between 2001 and 2004 it was found that to provide secondary treatment extra land would be required next to the Stonecutters Island Sewage Treatment Works. Furthermore, there were some uncertainties as to the likely rate of population increase in the future and the sewage flow build-up. Consequently, bearing in mind the very significant improvements to overall water quality that had already been brought about by HATS Stage 1, the Government decided that the most pragmatic approach would be to pursue a phased implementation of the review panel's findings, with the first step being to focus on providing the same highly effective treatment to the remainder of the harbour area sewage as had been applied in HATS Stage 1. This was the recommendation that the Government put forward during the extensive consultation exercise held between 21 June 2004 and 20 November 2004, the outcome of which was presented to LegCo EA Panel on 25 April 2005 and further debated on 5 July 2005. According to the consultation results, 68% of the key stakeholders and 50% of the individuals who expressed a view on the subject supported phased implementation. Certainly there were some in the community who expressed the view that we should proceed to implement biological treatment in one step and such views were canvassed at the discussion with deputations at the EA Panel meeting on 5 July 2005. However we have been proceeding in accordance with what we believe to have been the consensus view, namely that we should extend the highly cost-effective chemical treatment to all the HATS area sewage first, and then provide the biological step subsequently when the projected build up of sewage flows, and water quality trends, indicate that it is necessary to do so. In this way we can avoid saddling users of sewage services (or taxpayers) with the extra \$700m per annum recurrent costs of biological treatment before it is absolutely necessary.

Turning to the disinfection proposal, the need to apply chlorination disinfection arises mainly from the community's wish to improve water quality at the Tsuen Wan beaches as soon as possible. You may recall that this view was expressed most forcefully by the Public Accounts Committee in May 2004. The only way we can meet this request in a reasonable time frame is by applying chlorination disinfection (followed by dechlorination to remove any residual trace quantities of toxic chlorine). The alternative would be to pursue UV disinfection. This would take approximately four more years to bring about improvements and at least an extra \$400 million in capital investment. Much more time is involved in the UV option because of issues such as land availability, land re-zoning, additional EIA procedures, and possible need for a new power sub-station would have to be addressed. With regard to the environmental impact of the chlorination/dechlorination process, this is currently being assessed through a formal environmental impact assessment being conducted under the EIAO. The report will be subject to public inspection and comment in due course. I feel it would be best to let the EIA take its course so that I have the opportunity to consider all the views that might be expressed on the EIA, and to take them all into account in a balanced fashion. Notwithstanding this, I have included at Annex the findings by the Drainage Services Department's consultants in relation to some of the issues now raised by WWF.

I trust this helps put matters in context, we stand ready to discuss with the EA Panel at any time.

Yours sincerely,

(Anissa Wong) Permanent Secretary for the Environment, Transport and Works (Environment)

Encl. c.c. SETW DDS

Item	Sub-headings	WWF's comments	Response from project proponents
1	BACKGROUND		
1.1	Secondary (biological) treatment of sewage is the norm in developed countries	Secondary (or biological) treatment of sewage is now the norm in developed countries and is fast becoming the norm in developing countries, including China (see below).	Secondary treatment is often adopted when there is a need to minimize the impact of a discharge on nearby sensitive waters, or waters with low assimilative capacity. Local sewage is subject to this or higher level of treatment when discharged to sensitive water bodies such as Sai Kung, Tolo Harbour, Mirs Bay, or inland waters. Nevertheless, primary treatment or chemically-enhanced primary treatment (CEPT) is still practised in major cities when their discharges enter into less sensitive waters or waters with good assimilative capacity. Examples include the Bailongguan STW (with a design dry weather flow of 1.2 million m ³ /d), and Zhuyuan STW (with a design dry weather flow of 1.7 million m ³ /d) in Shanghai, the City of Montreal STW (with an average flow of 2.57 million m ³ /d), the Sand Island STW (with an average flow of 500,000) in Sydney, Australia.
1.2	Experts recommended in 2000 that we should upgrade to secondary treatment	In 2000, a panel of international experts set up by Government (the International Review Panel) concluded and recommended that the Stonecutter Island Sewage Treatment Works (SCISTW) should be upgraded to secondary treatment.	The Government has accepted the recommendation of the IRP that it would be preferable and feasible to provide the HATS sewage with secondary treatment and discharge it directly in the harbour, rather than pursue the original proposal for a lower level of treatment combined with a long sea outfall discharging in the South China Sea. The present plan to split HATS Stage 2 into two phases does not deviate from the IRP's recommendation.

Item	Sub-headings	WWF's comments	Response from project proponents
1.3	Secondary treatment	Secondary treatment of sewage was	There has been no change in the policy direction. It remains the
	was the initial policy	the initial policy direction of the	Government's intention to pursue secondary treatment under HATS Stage
	direction until ETWB	Government for HATS Stage 2.	2. The proposal to pursue a phased approach was made in recognition of
	suddenly changed	However, presumably due to	uncertainties (caused by slower population growth and sewage flow
	tack, sub-dividing the	precarious government finances and	build-up) over precisely at what point the biological treatment would be
	project into two	a weak economy at the time, and	needed in order to safeguard water quality objectives, the complexities of
	stages, HATS 2A and	fearing that there would not be	tackling various issues concerning the earmarked expansion site for the
	2B	support in Legco or in the	works, and very significant extra recurrent costs which would have to be
		community for the cost of secondary	recovered from sewage services users through sewage charges. Taking
		treatment, the ETWB under Sarah	these factors into account the HATS Monitoring Group of local experts and
		Liao suddenly changed tack and in	community representatives which was set up to oversee the Government's
		2004 proposed sub-dividing HATS	further development of the IRP proposals agreed that a phased approach
		Stage 2 into Stage 2A and Stage 2B.	would be a pragmatic way forward. During the extensive public
			consultation carried out between 21 June 2004 and 20 November 2004 we
			found that 68% of key stakeholders and 50% of individual respondents
			who commented supported the phased approach. The findings were
			presented to and debated at the LegCo EA Panel on 25 April 2005 and 5
			July 2005. Panel members did not object to the phased approach at that
			time either.
1.4	2A would provide	Stage 2A would provide primary	The Government's plan is to provide chemically enhanced primary
	"primary" treatment;	treatment of sewage from the	treatment (not just primary treatment) to the Stage 2A flows and review the
	2B (secondary	harbour area not already treated by	timing for further upgrade of treatment levels to biological treatment at
	treatment) would be	Stage 1. Secondary treatment under	2010/11. Chemically-enhanced primary treatment is highly cost-effective
	postponed	Stage 2B would be postponed to an	when compared to primary and secondary treatment and has been used
		indeterminate date.	successfully in HATS Stage 1, leading to observable and significant

Item	Sub-headings	WWF's comments	Response from project proponents
			improvements in water quality in the eastern and central part of Victoria
			Harbour. In terms of treatment efficiency it removes about 70% of the
			organic pollution (measured as BOD) and 80% of the suspended solids.
			The phased approach is both environmentally acceptable and cost-effective
			in handling the uncertainties caused by population changes and other
			factors mentioned in the response in Item 1.3 above. The Government
			will upgrade to biological treatment at the appropriate time. We have no
			plan to postpone Stage 2B indefinitely.
1.5	The proposal to	In view of the anticipated increase in	In relation to the impact on the Tsuen Wan Beaches caused by HATS Stage
	disinfect the primary	outflow of primary treated effluent	1, in 2004 the Public Accounts Committee (PAC) of the Legislative
	effluent by	from the SCISTW as result of HATS	Council expressed concern that the Stonecutters Island Sewage Treatment
	chlorination was	Stage 2A, and its effect on water	Works (SCISTW) had not been provided with a permanent disinfection
	driven by political	quality in the Tsuen Wan area, in	facility, and considered that the Government had the responsibility to
	considerations	particular its seven bathing beaches,	improve the water quality in the affected area in order that the beaches
		it was further proposed that primary	could be re-opened for public use. Thus, the proposal to install a permanent
		treated effluent should be disinfected	disinfection facility at SCISTW, and to advance part of the facility is
		through chlorination. The chlorine	primarily to address the requests of LegCo and the public.
		disinfection proposal was primarily	
		driven by the desire to re-open the	In programming terms, the chlorination proposal enables the project to be
		seven bathing beaches, in order to	delivered within a relatively short time compared with other disinfection
		ensure the support of the local	options, thus meeting the request of the PAC for early action.
		communities for the HATS Stage 2	
		extension of sewage treatment in the	
		SCISTW.	

Item	Sub-headings	WWF's comments	Response from project proponents
1.6	The chlorination	These proposals – to postpone	As stated above, we do not propose to postpone secondary treatment
	proposal and delay of	secondary treatment indefinitely, and	indefinitely but rather to split the project into two phases. Further, as stated
	secondary treatment	to chlorinate the primary treated	in the response for Item 1.1, large scale application of CEPT has been
	have caused dismay in	effluent – have caused consternation	proven to be highly cost-effective in Hong Kong and is also adopted in
	many circles	among sewage treatment experts as	other big cities.
		well as those sections of the	
		community who had been led to	With regard to chlorination, the proposal for the advance disinfection
		expect that sewage treatment in	facility is currently the subject of an EIA. As part of the process there have
		Hong Kong would finally and	been a number of consultation sessions with the academic and engineering
		belatedly catch up with standards in	community so far and the Drainage Services Department's consultants have
		the developed world.	not detected significant signs of the "consternation" referred to here. At a
			public seminar held on 7 December which included a substantive
			presentation on the proposed use for chlorination for HATS, attended by
			over 100 local practitioners in the environmental engineering and scientific
			community there was not a single question on the suitability of the
			proposed disinfection technique.
2	CHINA VERSUS HO	NG KONG	
2.1	PRC standards for	China has now adopted consistent	The PRC discharge standards tend to be prescriptive in nature irrespective
	sewage treatment have	effluent discharge standards	of flow quantity.
	been established and	nationally, whereas Hong Kong has	
	are higher than Hong	yet to do so. Furthermore, under	In Hong Kong, for large sewage treatment works (STWs) the discharge
	Kong's	recent regulations, every new sewage	standard and treatment levels are set only after detailed assessments of the
		plant in China has to offer secondary	works' environmental impacts have been conducted.
		treatment; additional disinfection is	
		required if discharging into Grade II	This case-by-case approach for large STWs is adopted in recognition of the

Item	Sub-headings	WWF's comments	Response from project proponents
		waters and even more stringent	fact that their huge discharge volumes could have significant impacts on
		treatment if discharging in to Grade I	the receiving waters, especially those with limited assimilative capacity.
		receiving waters such as the Pearl	The case-by-case approach is the preferred method to determine treatment
		River estuary. Existing plants have	levels as it is through the detailed impact assessment process that we are
		to be upgraded by 2006. It is	able to ensure cost-effective solutions are put in place which do not place
		anticipated, therefore, that an	an excessive burden on the taxpayer, or the users of sewage services.
		overwhelming proportion of all	
		sewage in China will be given	In cases where sewage flow is anticipated to increase over the long term
		secondary treatment soon. Hong	proposals for expansion will need to be subject to further environmental
		Kong will be the exception. (Note:	impact assessment so that the treatment level can be upgraded in a timely
		all sewage in Macau receives	fashion.
		secondary treatment.)	
			The Government has been adopting this prudent approach in managing the
			public sewage treatment facilities and together with other pollution
			abatement measures, has been successful in raising the Water Quality
			Objectives compliance rate, in spite of increases in population and
			pollution loads.
2.2	National standards	The waters around Shenzhen and	We understand that different grades of waters surrounding cities in China
	require tertiary	Zhuhai are Grade I: they are	are specified depending on the different designated functional uses of the
	treatment of sewage in	therefore required under law to apply	waters in question. We also understand that the "Discharge Standards of
	Shenzhen and Zhuhai	not only secondary treatment to their	Pollutants for Municipal Wastewater Treatment Plant of the National
		sewage but also tertiary treatment	Standard", which applies to areas of China except HKSAR, stipulates that
		(removal of Nitrogen and	the level of treatment depends on the designated functional uses and hence
		Phosphorus) followed by	the different grades of the receiving water bodies. So, in effect, the level of
		disinfection. Most rivers and seas	treatment would depend very much on where the effluent will be

Item	Sub-headings	WWF's comments	Response from project proponents
		in China are graded at least Grade II,	discharged and therefore it varies on a case-by-case basis. Nevertheless,
		requiring secondary treatment and	since most sewage treatment works in China are at inland locations
		disinfection at a minimum.	discharging into waters of limited assimilative capacity it is inevitable that
			most will need to provide treatment of a relatively high level.
2.3	Hong Kong is not only	In contrast, Hong Kong seems to be	The Government believes it is more prudent to adopt a case-by-case
	failing to meet	taking retrograde steps in its sewage	approach to evaluate the treatment levels needed for its large sewage
	international and PRC	treatment. Whereas the sewage	treatment works by making sure the environmental impacts are properly
	standards, but going	plants serving the New Towns offer	assessed and the quality of the treated effluent is acceptable for discharge
	backwards	secondary treatment, those now	into specific receiving water bodies with varying assimilative capacities
		being planned will offer primary	and sensitive uses. This approach ensures close match of the adopted
		treatment only, e.g. SCISTW and the	treatment levels with the characteristics and specific uses of the local
		Pillar Point sewage treatment plant.	waters. General improvement in Hong Kong's water quality over the last
			decade has borne witness to the successful implementation of this
			approach. It ensures public money is properly spent to achieve the
			desirable water quality in a cost-effective way.
3	DISINFECTION BY	CHLORINATION: THE PROBLEM	MS
3.1	Chlorine disinfection	Very few sewage plants around the	Drainage Services Department's consultants have provided the following
	is outdated and being	world offer chlorine disinfection of	information based on their work on the on-going EIA study for the
	phased out around the	primary treated effluent. To the	Advance Disinfection Facilities (ADF). The consultants have gathered
	world	extent that they do exist, they are	information on a total of 132 sewage treatment works (STWs), each with a
		seen as outdated and are being	design capacity of not less than 10,000 m ³ /d, were surveyed in 24 coastal
		phased out where possible.	cities, including eight cities in North America, nine in Asia/Australia/New
			Zealand and seven in Europe. ^{Note (a)}
			13 of the surveyed sewage treatment works were primary/chemical

Item	Sub-headings	WWF's comments	Response from project proponents
			enhanced primary treatment works with a total flow capacity of 6,762,000
			m ³ /day. Almost 70% of the total effluent was discharged without
			disinfection. The remaining 30% of the effluent was disinfected using
			chlorination/dechlorination, the largest plant being Newton Creek STWs in
			New York, USA, which has a capacity of 1.2 million m^3/day .
			Of the disinfection facilities commissioned in the surveyed cities in the last
			10 years, some 75% of the installed capacity used
			chlorination/dechlorination, whilst the remaining 25% used UV radiation
			for disinfecting mostly secondary or tertiary effluents. For those
			disinfection facilities planned for commissioning in the coming 5 years, the
			total design capacities using chlorination and UV radiation are of a similar
			order. Notable examples for recent large-scale chlorination facilities
			include the South STWs in Seattle, USA, which was upgraded in 2002 and
			has a capacity of 435,000 m ³ /day; the Orange County STWs in California,
			USA, which has a capacity of about 900,000 m^3/day , and the two STWs in
			Guangzhou which were commissioned in 2004 and have a total capacity of
			$1,020,000 \text{m}^3/\text{day}.$
			It is noted from the survey conducted by the consultants that several new
			STWs are proposing to adopt LIV radiation for disinfecting either primary
			or secondary effluent. Yet at the same time a secondary STWs in Shell
			Harbour Australia is intending to replace its current UV disinfection
			system with a chlorination system. In addition, several overseas primary
			or secondary STWs are intending to upgrade their current chlorination
			system from chorine gas to sodium hypochlorite, rather than to switch to

Item	Sub-headings	WWF's comments	Response from project proponents
			UV radiation. Examples include the Annacis Island STWs and the Lion
			Gates STWs in Vancouver, Canada, which have capacity of 483,000m ³ /day
			and 92,000m ³ /day respectively.
3.2	Chlorine disinfection	Chlorine disinfection is still quite	The survey on disinfection practices in other coastal cities conducted
	is more usual for	common for secondary treated	under the ADF EIA study by DSD's consultants showed that 119 plants of
	secondary treated	effluent. However, since secondary	the surveyed sewage treatment works were secondary/tertiary sewage
	effluent, on a much	treated effluent is already much	treatment works with a total flow capacity of 31,926,000 m ³ /day. 29% of
	smaller scale	cleaner, the scale of chlorine	the secondary/tertiary effluent was discharged to receiving waters without
		disinfection required is much	disinfection. Chlorination was used to disinfect 65% of the
		smaller.	secondary/tertiary effluent. The capacity of the largest secondary plant
			using chlorination was $1,817,000 \text{ m}^3/\text{d}$ in Deer Island, Boston, USA. UV
			radiation was used to disinfect 5% of the secondary/tertiary effluent. The
			capacity of the largest secondary plant using UV radiation was 638,000
			m^3/d in Ringsend, Dublin, Ireland. One plant in Tokyo, Japan, uses a
			combined chlorination and ozonation to disinfect its effluent which is
			discharged to the upstream of some water gathering catchments. Note (a)
			For the Deer Island STW in Boston, USA, which has similar scale as
			SCISTW and uses chlorination/dechlorination for disinfection, the average
			chlorine dosages during the primary treatment stage and the secondary
			treatment stage are 16.5 mg/L and 2.2 mg/L respectively.
			Based on the results of the bench scales tests conducted on the CEPT
			effluent from SCISTW and those on the secondary treated effluent from
			Shatin STWs, the ADF EIA Consultants recommend that the required

Item	Sub-headings	WWF's comments	Response from project proponents
			chlorine dosages during the HATS Stage 2A (CEPT effluent) and Stage 2B
			(secondary effluent) would be about 11-13mg/L and 2-3 mg/L respectively. Note (a)
3.3	Hong Kong will be	The proposed chlorine disinfection	DSD's consultants have estimated that the annual consumption of sodium
	one of the largest	facility at the STISTW will be by far	hypochlorite solution for disinfecting the CEPT effluent from SCISTW
	buyers of chlorine in	the largest such facility in the world.	under the ADF stage and Stage 2A would be about 7,180 and 9,810 metric
	the world	It will be four times larger than the	tons on a chlorine equivalent basis respectively ¹ (equivalent to about
		next largest facility in Vancouver.	49,400 cubic metres and 67,500 cubic metres of 12.5% solution
		The anticipated requirement for	respectively). Note (a)
		chlorine will make the Drainage	
		Services Department (DSD) one of	According to information available ² , the annual world consumption of
		the largest single buyers of chlorine	sodium hypochlorite solution in 2005 was approximately 1,319 thousand
		in the world – about 100,000 tons of	metric tons on a chlorine equivalent basis. Of which, approximately 893
		industrial bleach per year, costing	thousand metric tons were for non-household uses ³ . In comparison, the
		about HK\$100 million and	estimated annual demand of sodium hypochlorite at SCISTW under the
		representing 8.9% of the total USA	ADF Stage and Stage 2A would be about 0.54% and 0.74% of the world's
		demand for industrial bleach. The	total consumption respectively, or about 0.80% and 1.10% of the world's
		fact that Hong Kong is now	consumption for non-household uses.
		committing to such outdated	
		technology on such a large scale is	According to information gathered from the States ⁴ , the sodium
		very puzzling to local and	hypochlorite (at 12.5% strength) consumption in the States in 2006 would

 ¹ The sodium hypochlorite consumption under the ADF stage and Stage 2A are estimated based on a chlorine dosage of 12mg/l and an average flow of 1.64 million cubic metres and 2.24 million cubic metres per day respectively.
² References: "James Glauser, Chemical Economics Handbook -Hypochlorite Bleach (August 2006)", <u>http://www.sriconsulting.com/CEH/Public/Reports/508.2000/</u>
³ Non-household uses include pool sanitization, wastewater treatment and drinking water disinfection, pulp and paper, and textile bleaching.
⁴ Reference: "Chemical Market Report, Schnell Publishing Company", <u>http://www.the-innovation -group.com/ChemProfiles/Sodium% 20Hypochlorite.htm</u>

Item	Sub-headings	WWF's comments	Response from project proponents
		international sewage treatment	be about 282 thousand metric tons on a chlorine equivalent basis. Of
		experts.	which, approximately 161 thousand metric tons would be for industrial use.
			In comparison, the estimated annual demand of sodium hypochlorite at
			SCISTW under the ADF Stage and Stage 2A would be about 2.5 % and
			3.5% respectively of the projected total consumption, or 4.5% and 6.1%
			respectively of the projected industrial consumption in the States in 2006.
			Based on the above information, the estimated annual consumption of hypochlorite solution (@ 12.5% concentration) will be less than 1% of the
			total consumption world-wide, or less than 4% of the total consumption in
			the States.
3.4	Chlorine by-products	Chlorination is out of favour in the	DSD's consultants have, under the ADF EIA study, conducted a series of
	can be extremely toxic,	world of sewage treatment because	tests and studies ⁵ on using chlorination/dechlorination for disinfecting
	and harmful to	the Total Residual Chlorine (TRC)	HATS effluent to investigate its environmental acceptability. All results
	humans and the	and the creation of by-products (such	indicate that chlorination/dechlorination is an environmentally acceptable
	environment	as THM and HAA) are harmful to	disinfection technology for HATS. Note (a)
		human health and detrimental to the	
		environment. TRC is extremely	The key concern with chlorination on the environment is the toxicity
		toxic to marine organisms. THM	generated by the total residual chlorine (TRC). This concern can be fully
		and HAA are less toxic to aquatic	dealt with by applying dechlorination in the disinfection process, which is
		life but are mostly of concern for	part and parcel of a chlorination disinfection system nowadays. By the
		human health: THMs are suspected	addition of sodium bisulphite, the proposed dechlorination chemical, TRC

⁵ Tests and studies include: (i) laboratory tests and studies to understand the chemistry of the chlorination and dechlorination process, the optimal chemical dosages, and the formation of disinfection by-products, (ii) whole effluent toxicity tests to determine the acute and chronic toxicity of chlorinated/dechlorinated effluents on local marine species, (iii) human health and ecological risk assessments to determine the risk of these chemicals to human being, aquatic life and marine mammals

Item	Sub-headings	WWF's comments	Response from project proponents
		carcinogens and are strictly	in the effluent can be completely removed. The consultants' assessment
		monitored in drinking water.	shows that the TRC criteria established by the United States Environmental
			Protection Agency (USEPA) can well be met at the initial dilution zone of the HATS discharge. ^{Note (a)}
			Another concern with chlorination is the formation of chlorinated
			by-products, mainly the trihalomethanes (THM) and haloacetic acids
			(HAA). The consultants test results indicate that the levels of THM and
			HAA after chronitation and decisionnation would be well below the
			HAA Moreover, their studies confirm that neither THM nor HAA would
			result in bioaccumulation through the food chain. Note (a)
			The tests conducted on local marine species indicate that the
			chlorination/dechlorination process did not introduce additional toxicity to
			the effluent. The risk assessments, based on very conservative
			assumptions, also show that the incremental risks arising from chlorinated
			effluent from SCISTW on human health and marine ecology are
			insignificant and are in compliance with the risk criteria established by the
			USEPA with a large safety margin. ^{Note (a)}
3.5	The harmful effects of	In order to mitigate the creation of	DSD's consultants found that the chlorination/dechlorination technology,
	chlorination will be	harmful by-products, it is proposed	with the use of hypochlorite solution, has been widely practised for
	mitigated by	that the chlorination process will be	disinfection in many countries for many years. One of the notable examples
	de-chlorination, but	followed by de-chlorination.	is the Deer Island STWs in Boston, USA which has a capacity of 1,817,000
	nowhere has this been	However, the success of this requires	m ³ /day and has been using hypochlorite chlorination since 1991 when it

Item	Sub-headings	WWF's comments	Response from project proponents
	attempted on a scale	accurate monitoring and delicate	was a primary treatment plant before upgrading introduction of the
	contemplated for	control of dosage of the large	secondary process in 1997. Note (a)
	Hong Kong: control of	amounts of chemicals involved.	
	risks on this scale is	Nowhere has this been attempted on	With reference to the experience gained from the Deer Island case, the
	untested	the scale being proposed at the	consultants have developed a conceptual operation and control plan for our
		STISTW(sic). An EIA on chlorine	HATS case based on an approach involving slight over-dechlorination to
		disinfection has recently been	ensure all TRC in the effluent is removed prior to discharge. Under the
		completed, which tested for	EIA Study, the potential impacts of chlorination-by-products and the slight
		by-product formation of	overdosing of sodium bisulphite to the receiving water had been assessed
		chlorination/de-chlorination.	and found to be acceptable. Note (a)
		However, the bench scale tests	
		conducted in the EIA are not	DSD's consultants have also commissioned Professor Howard Huang of
		equivalent to the large scale	HKUST under the ADF EIA study to conduct a series of tests to examine
		processes of the final facility.	the effects of dechlorination on the chlorinated CEPT effluent from
		Chlorination of primary treated	SCISTW. It was reported that no residual chlorine was found in the
		effluent will require high dosages;	effluent after a less than 15-second dechlorination reaction. The test
		the chlorination/de-chlorination	results also showed that no further production of CBPs was found after
		process will therefore be difficult to	dechlorination. ^{Note (a)}
		control, creating risks of discharge of	
		high levels of residual chlorine.	
3.6	Long-term effects on	The long-term effects on the marine	The whole effluent toxicity tests (WETT) for raw and
	the marine	environment and marine organisms	chlorinated/dechlorinated (C/D) effluents from SCISTW and Tolo Harbour
	environment are of	of the harmful by-products of	Effluent Export Scheme (THEES), i.e. effluents from Sha Tin STWs and
	grave concern	chlorination, a fairly well researched	Tai Po STWs (to represent the secondary effluent to be generated from
		area in the scientific community, are	HATS Stage 2B), were carried out by DSD's consultants following the

Item	Sub-headings	WWF's comments	Response from project proponents
		of grave concern to WWF. In the	protocol established by the Agriculture, Fisheries and Conservation
		EIA, toxicity tests were carried out	Department (AFCD) through a study undertaken by the City University in
		on five representative local species,	2001 for the Hong Kong marine environment. Four species, including
		but it is questionable whether the	fish, amphipod, barnacle larvae and shrimp, were chosen for the acute
		limited scope of these tests can	toxicity tests, while diatom was used for the chronic toxicity tests. These
		gauge the long-term reproductive	five species represent the important species of different communities in the
		and multi-generational effects on	marine environment of Hong Kong and are of great ecological and fisheries
		species or other indirect impacts on	significance. Note (a)
		complex marine ecosystems.	
		(Organisms were exposed for only	The WETT results showed no acute toxicity on fish, amphipod and shrimp
		48 hours and the effects multiplied	for the raw and C/D effluents of SCISTW, but the 48-hr $LC50^6$ for
		by a factor of 10 to predict prolonged	barnacle larvae and the No-Observable-Effect-Concentration (NOEC) ⁷ for
		exposure.)	diatom could be determined for both the raw and C/D effluents of
			SCISTW. Further statistical analysis was conducted on the toxicity test
			data of barnacle larvae and diatom to determine whether the C/D process
			has induced additional toxicity in the chemically enhanced primary treated
			(CEPT) effluent in SCISTW. The analysis showed that the C/D process
			did not induce any statistically significant differences to the toxicity effect
			in the CEPT effluent on barnacle larvae and diatom. Note (a)
			The WETT results for the secondary effluents from THEES showed that
			the raw and C/D secondary effluents did not exert acute and chronic
			toxicity effect on the species used in the WETT. No 48-hr LC50 for
			animal species and no NOEC for diatom could be determined. Note (a)

 ⁶ 48-hr LC₅₀ is the lethal concentration of effluent to 50% of test animals after 48 hours of exposure.
⁷ NOEC – No-Observable-Effect-Concentration is the highest concentration of effluent producing effects not significantly different from responses to controls.

Item	Sub-headings	WWF's comments	Response from project proponents
			The use of the "acute-to-chronic ratio" (ACR) to assess the chronic toxicity
			of the chlorinated/dechlorinated effluent, based on the acute toxicity data
			from the acute WETT conducted for the C/D effluent, is a conservative
			approach adopted by USEPA as it acknowledges that chronic toxicity data
			may be sparse. USEPA therefore developed the ACR approach to
			extrapolate to a chronic toxicity concentration using exposure
			considerations and available acute toxicity data when chronic toxicity data
			for the species, chemical or effluent of concern are unavailable. Note (a)
			According to USEPA (1991), "the ACR of 10 represents the upper 90th
			percentile of all the ACR data obtained by USEPA. Given the protective
			margin of safety inherent with the use of a critical flow for the calculation
			of a chronic receiving wastewater concentration, an ACR of 10 should
			provide ample protection against chronic instream impacts."
			Based on the literature review ⁸ conducted by the ADF EIA consultants, no
			evidence can be found to suggest that the chlorinated effluent would affect
			the reproductive ability of marine mammals. Note (a)
			In addition, according to the consultants' ecological risk assessments on

 ⁸ According to Intergraded Risk Information System (IRIS) database of USEPA and WHO's Environmental Health Criteria 216 "Disinfectants and Disinfectant Byproducts", the animal studies conducted so far have demonstrated no reproductive or teratogenic effects of chlorine.
⁹ The Hazard Index (HI) for dolphins (due to TRC & chlorinated by-products) estimated for the worst-case scenario is 0.00137 which is far below the acceptable criteria.

⁹ The Hazard Index (HI) for dolphins (due to TRC & chlorinated by-products) estimated for the worst-case scenario is 0.00137 which is far below the acceptable criteria. HI is the measurement of health hazard due to exposure of all identified chemical of concerns (COCs), which is calculated by summing the Hazard Quotients (HQs) of all identified COCs whereas HQ is the measurement of health hazard due to exposure of a COC. The risk of an adverse effect occurring is low if HI<1.

Item	Sub-headings	WWF's comments	Response from project proponents
			aquatic life and marine mammals ⁹ conducted under the EIA study, the
			incremental risks arising from chlorinated/dechlorinated HATS effluent are
			low, and are well within the risk criteria established by the USEPA with a
			large safety margin. Note (a)
			A long term marine water quality monitoring programme has been
			conducted for years for the Deer Island STWs. It is understood from their
			monitoring results that there were no unacceptable environmental impact
			arising from the discharge of chlorinated effluent.
1	A FLAWED AND WA	STEELL SOLUTION	
+ 4 1	Chloring diginfaction	Chloring disinfection was managed	
4.1		Chiorine distinction was proposed	It should also be noted from the consultant's water quality model results
	will not even achieve	as a solution to re-open seven	that, if no disinfection is provided, the bacteria levels in the Western
	its primary purpose of	bathing beaches in the Tsuen Wan	Harbour and the Isuen Wan beaches would further deteriorate as the
	re-opening the seven	area, beaches which were in any case	sewage flow at SCISTW increases due to the projected population growth
	bathing beaches	experiencing low and declining	in the harbour area and the commissioning of Stage 2A. Therefore,
		public usage because of the growing	disinfection is required not only to reduce the bacterial impact resulting
		background pollution of our western	from the commissioning of Stage 1, but also to mitigate any future
		waters. At a recent DSD briefing, a	deterioration so that the water quality of the Western Harbour and Tsuen
		chart was shown which indicated	Wan beaches can be returned to a healthier condition. Water quality
		that even with HATS 2A fully	modeling results have demonstrated that the provision of disinfection to the
		operational, water quality at the	SCISTW effluent would improve the water quality in the Western Harbour
		seven beaches would not be good	and the beaches along the Tsuen Wan coast, which together with other local
		enough for re-opening – this	sewerage improvement works, would facilitate the closed Tsuen Wan
		information was not disclosed to the	beaches to be re-opened for public enjoyment. The disinfection of the
		public during the consultation	HATS effluent would also comply with the existing policy of providing

Item	Sub-headings	WWF's comments	Response from project proponents
		process in 2004.	disinfection to all large discharges of sewage effluent. Note (a)
4.2	The stated objective of	In other words, the Government is	A technical review of the effectiveness of the various disinfection
	the chlorine	now proposing the world's largest	technologies was conducted by the consultants under DSD's ADF EIA
	disinfection facility is	chlorine disinfection facility, costing	Study. The study showed that chlorination is an effective disinfectant for
	fatally flawed	millions of dollars of public money	inactivating bacteria. The germicidal efficiency of disinfection by
		and with potentially harmful effects	chlorination depends primarily on residual chlorine and the contact time.
		on the marine environment, with the	Chlorine is also a highly effective viricide. With average $C_R T$ of 4 to 400
		objective of re-opening seven little	mg·min/L, it is shown to be capable to achieve 99.99% virus inactivation
		used beaches, an objective that is	(USEPA, 1999). Although chlorination is found to be less effective in
		now not achievable by HATS 2A	protozoa inactivation, this inactivation is generally not the main concern in
		<u>alone.</u>	the wastewater disinfection especially for discharging of wastewater to ocean. Note (a)
			On the other hand, the consultants noted the effectiveness of the UV
			disinfection process depends on a number of variables including the
			characteristics of the UV disinfection system, the overall system
			hydraulics, the presence of particles, the characteristics of the
			microorganisms, and the chemical characteristics of the wastewater. The
			characteristic of the microorganism is one of the key variables. Bacteria,
			protozoa and viruses are susceptible to UV-C radiation. Studies have
			shown that the amount of cell damage and subsequent repair is directly
			related to the UV dose. Photochemical damage caused by UV may be
			repaired by some organisms. The amount of repair will also depend on the
			dose (intensity) of photo-reactivating light. Note (a)

Item	Sub-headings	WWF's comments	Response from project proponents
4.3	Chlorine disinfection	Chlorine disinfection will not	Please see responses above. In addition, disinfection is not intended to
	has limited	remove pathogenic viruses, parasites	address nutrient loads. For algal growth, among other factors, it requires
	effectiveness. The	or heavy metals (substances that are	adequate supply of nutrients such as nitrogen and phosphorus, and human
	risk/reward ratio is not	if anything more harmful to the	sewage is one of the sources for such nutrients.
	optimal	marine environment and bathers),	
		nor does it address the massive	Nitrogen in human sewage may be removed by biological treatment
		nutrient load discharged into the	process that we call "denitrification". But, a consultancy study for the way
		harbour, which disrupts the natural	forward for HATS opined that denitrification is not the most economical
		flora and fauna of the harbour and	means for controlling red tides in the receiving water body, due to the water
		could lead to areas of eutrophication	body's specific characteristics. This findings tally with the IRP's original
		(de-oxygenated dead zones). It	recommendation that denitrification might not be necessary for HATS. The
		could also lead to algal blooms and	consultancy study further recommended to limit the discharge of
		red tides which pose risks both to	phosphorus through the CEPT process in Stage 2A, for controlling red
		bathers and local fisheries (both wild	tides. This concept was proposed by the consultant's expert team which
		and farmed).	composed of local and international academics specialized in red tides, and
			oceanography, and was agreed by the Monitoring Group for HATS in
			which the three IRP members (one of which is a renowned marine
			biologist) are members.
4.4	The true cost of the	When HATS Stage 2B materialises,	A capital cost of \$60M (inclusive of site supervision costs) for the ADF
	project is unclear and	the huge chlorination facility will	was mentioned during the 3 rd Consultation Forum conducted by DSD's
	likely far higher than	become largely redundant. The	consultants under the ADF EIA Study on 12 October 2006. As explained
	disclosed.	financial cost of the facility being	at the Forum, the figure represents only the capital cost for the construction
	Redundancy when	quoted by Government today is very	of the advance disinfection facilities. The full capital cost of providing
	HATS 2B materialises	different (lower) than the cost quoted	chlorination / dechlorination for disinfecting the Stage 2A CEPT effluent
	will be a huge cost to	at the time of the public consultation	would be about \$290M. The difference is mainly to provide a

Item	Sub-headings	WWF's comments	Response from project proponents
	the community	in 2004. The latest estimate	purpose-built disinfection contact tank under the Stage 2A main works.
		appears unrealistically low in the	There would be little redundancy (except perhaps some surplus in storage
		view of most professionals in the	capacity) when Stage 2B is in place if chlorination remains the disinfection
		field. We urge members of the	option for HATS. Note (a)
		Panel to closely examine the true	
		financial costs of the chlorination	
		facility (both in terms of capital	
		investment and future operation and	
		maintenance), the scale of the	
		redundancy in the event of Stage 2B	
		and therefore the value for money of	
		the chlorination facility.	
4.5	Given the risks, better	In view of the risks of harmful	As part of the ADF EIA study, scientific studies have been carried out to
	no chlorination at all	impacts of chlorine disinfection on	evaluate risks as described above. ^{Note (a)}
		the environment and human health,	
		WWF considers it preferable to	WWF's position on abandoning chlorine disinfection is noted.
		abandon chlorine disinfection as a	
		part of HATS 2A, irrespective of the	
		arguments over the timing of HATS	
		2B.	
5	HONG KONG DESE	RVES SECONDARY TREATMENT	ГТОДАҮ
5.1	Hong Kong needs and	Proceeding straight to secondary	The Government has already pledged to provide secondary treatment to all
	deserves world-class	treatment under HATS 2B will	the HATS sewage as an ultimate measure to tackle the harbour pollution.
	sewage treatment –	certainly be more expensive, but the	The splitting of HATS Stage 2 into two phases is due to the uncertainty in

Item	Sub-headings	WWF's comments	Response from project proponents
	and we can afford it	GDP per capita of Hong Kong is as	population growth and sewage flow build-up, the time needed to resolve
		high as many cities in the developed	land issues related to Stage 2B, and that Stage 2A alone will likely enable
		world – we can certainly afford it.	water quality in the harbour to meet the water quality objectives for a
		It should be remembered that	reasonable amount of time after its commissioning. Since HATS is a mega
		although Hong Kong has world class	scale project and requires substantial fiscal commitment by the community,
		infrastructure in many areas (e.g.	we believe that we have a duty to exercise fiscal prudence in its
		airport, MTR), it is well behind in	implementation.
		the quality of its sewage treatment:	
		in this sense, investment in HATS 2B	We do not believe that Hong Kong is "well behind in the quality of its
		secondary treatment is simply	sewage treatment". Rather, over the past two decades, we have
		making up for many years of	implemented a number of facilities with different treatment levels
		underinvestment in proper treatment	(including CEPT, secondary, and tertiary), in order to protect receiving
		of sewage from the harbour area.	waters of different sensitivities and assimilative capacities. Our phasing
		Government finances are in good	proposal for HATS Stage 2 is in line with this practice.
		order and the economy is strong: if	
		Hong Kong cannot make these	
		necessary investments in such	
		circumstances, when else is a good	
		time to do so?	
5.2	Investing in HATS 2B	In contrast to primary treatment,	Implementing Stage 2 in one phase would delay water quality
	now solves many	secondary treatment makes it	improvements by some 2 to 3 years when compared with completion of
	problems and delivers	feasible to remove viruses and most	HATS Stage 2A. The two-phase approach represents the most efficient way
	a far better and safer	bacteria and reduce the organic load	forward in terms of earlier delivery of improvements.
	solution. It is more	of the discharge. It would ensure	
	expensive, but offers	better water quality in the Tsuen Wan	

Item	Sub-headings	WWF's comments	Response from project proponents
	better value-for-money	area far quicker than the current	
		proposal of Stage 2A + disinfection.	
		In other words it can do much more	
		than primary treatment +	
		disinfection, without any of the	
		harmful side effects.	
5.3	Stage 2B can be made	Furthermore, Stage 2B could be built	Taking into account funding procedures, the need to carry out further
	operational within the	by the time the disinfection facility is	feasibility studies, investigations, etc., implementing Stage 2 in one phase
	same timescale as the	planned to be operational. The	would delay water quality improvements by some 2-3 years when
	chlorination facility	proposal to build a "temporary	compared with completion of HATS Stage 2A.
		facility" of this scale confounds	
		engineering sense.	
5 /	It is unaccontable that	In spite of the formidable scale and	See response to 5.1
5.4	an advanced city like	challenges of China's environmental	see response to 5.1.
	Hong Kong should	problems the country is making a	
	move in the opposite	determined and impressive effort to	
	direction of China and	improve the situation It is	
	the developed world	unacceptable that Hong Kong.	
		arguably China's most advanced city.	
		moves in the opposite direction of	
		China or indeed of every other	
		country in the developed world.	
		• •	
5.5	We've waited long	Hong Kong has waited long enough	Noted and agreed that further debate about the project would delay the

Item	Sub-headings	WWF's comments	Response from project proponents
	enough. Let's do the	for world-class sewage treatment to	cleaning up of the harbour.
	job properly.	clean up its world famous but	
		polluted harbour. Let's seize the	
		opportunity to fix the problem once	
		and for all.	

Note (a): Any comments related to the findings of the ADF EIA study at this stage are made without prejudice to the EIA process; and any expressions of impacts, being acceptable or not, must be taken to be the consultants' opinions.

EPD, December 2006