Health Effects of Transportation Noise in Hong Kong: Findings of a Large Scale Survey

Lam Kin-che
Former Director, Institute of Environment, Energy and Sustainability
Adjunct Professor, Department of Geography and Resource Management
The Chinese University of Hong Kong

Presentation to LegCo Panel on Environmental Affairs
31 May 2013
Health Effects of Transportation Noise in Hong Kong Study

• Commissioned by HK EPD

• Importance …. Hong Kong is unique
 – Compact and dense city
 – Possible cultural difference

• First city-wide large scale study in Asia using internationally accepted method and state-of-art noise mapping technology
Health Effects of Transportation Noise in Hong Kong Study

- **Study Team**
 - Lam Kin Che, CUHK (GRM, CUHK)
 - Environmental noise & project leader
 - Lex Brown, Griffith University (Australia)
 - Environmental noise, survey instrument, annoyance
 - Wong Tze Wai, CUHK (Public Health, CUHK)
 - Medical practitioner & noise-health effects
 - Irene van Kamp, Nat’l Institute of Public Health (Netherlands)
 - Epidemiology, public health & sleep disturbance
 - Chan Ying Keung, CUHK (Sociology, CUHK)
 - Statistician, social surveys
Objectives

• To review the non-auditory health effects, namely annoyance, sleep disturbance and cardiovascular diseases, based on the literature available from the WHO, EU and USA and other published scientific papers

• To look into the applicability and relevance of overseas results to the Hong Kong situation

• To study the annoyance effects due to transportation noise in Hong Kong, with the help of a household survey and a territory-wide noise mapping conducted respectively by the Census and Statistics Department (C&SD) and the Environmental Protection Department (EPD)
Methodology

- **Desk-top Review** of transportation noise-related health effects

- **Self-reported Annoyance & Sleep Disturbance:** Thematic Survey of Census & Statistics Department – 10,077 randomly selected households successfully interviewed

- **Exposure to Road Traffic Noise:** city-wide noise mapping
Scope of the Study

• Health Effects
 ▪ Review on annoyance, sleep disturbance & cardio-vascular diseases undertaken
 ▪ Survey on self-reported annoyance and sleep disturbance completed
 ▪ Self-reported cardio-vascular diseases not covered in this study

• Noise Exposure Assessment
 ▪ Focused on road traffic noise only
Findings

- **Desk-top Review** of transportation noise-related health effects

- **Self-reported Annoyance & Sleep Disturbance**: Thematic Survey of Census & Statistics Department
Potential Adverse Health Effects of Noise

• WHO Guidelines for Community Noise (1999)
 – Impact on auditory health
 – Interference with speech communication
 – Sleep disturbance
 – Performance effects
 – Annoyance
 – Cardiovascular effects
Annoyance

- "…a feeling of resentment, displeasure, discomfort, dissatisfaction, or offense when noise interferes with thoughts, feelings, or actual activities."

Annoyance at High Noise Levels

- "…should be considered a legitimate environmental health issue affecting the wellbeing and quality of life of the population…"

UK Health Protection Agency, 2009
Sleep Disturbance

• Sufficient evidence
 – Biological: increase in heart rate, arousals, sleep stage changes, hormone level changes and awakening
 – Self-reported sleep disturbance => increase in medicine use, body movements and insomnia

• Limited evidence
 – Disturbed sleep causes fatigue, accidents and reduced performance
 – Clinical conditions such as cardiovascular illness, depression and other mental illness

• Vulnerable group: children, elderly, pregnant women, shift workers, chronically ill
Disease and Environmental Noise

Blood pressure and heart diseases

• Growing evidence that environmental noise is associated with heart diseases
• Link with heart diseases is complicated by the presence of many other “confounding factors” that are also linked to heart diseases
• Link with hypertension has more evidence, but also influenced by “confounding factors”

Presented by Prof. TW Wong to LegCo Environmental Affairs Panel on 11th Jan 2013
Noise as a Potential Health Risk

- Supported by clinical studies in last 20 years
- Ascertained by several large scale surveys
 - HYENA
 - RANCH
 - ENNAH
- Reviewed by WHO experts
Noise – not just a feeling of discomfort
The Stress Model: Mechanism of the Noise Induced Effects (Babisch et al, 2001)

Noise Exposure (Sound Level)
- high
 - Direct pathway
 - Hearing loss
- moderate
 - Indirect pathway
 - Disturbances of activities, sleep, communication
 - Cognitive and emotional response
 - Annoyance

Stress Indicators
- Physiological stress reactions (unspecific)
 - Autonomic nervous system (sympathetic nerve)
 - Endocrine system (pituitary gland, adrenal gland)

Biological Risk Factors
- Blood pressure
- Cardiac output
- Blood lipids
- Blood glucose
- Blood viscosity
- Blood clotting factors

Manifest Disorders
Cardiovascular Diseases
- Hypertension
- Arteriosclerosis
- Ischaemic heart disease

Further Clinical Study
Findings

• *Desk-top Review* of transportation noise-related health effects

• *Self-reported Annoyance & Sleep Disturbance: Thematic Survey of Census & Statistics Department*
Pre-requisite to Achieve Goals

• Methodology which allows cross-country comparisons, e.g.:
 – Standardized question, wording and scales
 – Same / similar methodology as in other mega studies particularly with respect to the questions posed

• A scientific and robust approach is needed for comparison (Miedema et al., 2001)
The Survey

- 10,077 households covered
- “The question”?
 - Used the “standard” question
 - ISO 15666:2003
- How the question is posed?
 - Wording
 - Scale
 - 11-point scale
 - 5-point scale
 - Use of show card
The Exposure-Effect Curve

- Miedema & Oudshoorn (2001)
 - Synthesis of major studies producing exposure-effect curves
 - % Highly Annoyed
 - 8-10 on 10 pt scale

![Graph showing the relationship between traffic sound levels and percentage of highly annoyed individuals]
Information Obtained

- Annoyance/ Sleep Disturbance, with respect, separately, to
 - Road traffic noise
 - Rail noise
 - Aircraft noise
 - Other noise sources

- Other information which may help explain human response:
 - Personal: noise sensitivity, health conditions, coping behavior, sleep habits
 - Exposure: window/ air-conditioning, access to “quiet room”
 - Surrounding: satisfaction w/ neighborhood overall environment
 - Habituation: length of residence
QA/QC – Pilot Test of Questionnaire

• Two Pilot studies by CUHK Team (n >100)
 – Refinements of questions
 – Testing of Cantonese terms
 – Use of show cards
Translation and back-translation: English to Cantonese

• Need for standardization
 – From English to other languages

• How?
 – Use of words for “Annoy”, “Bother”, “Disturb”

 • Start with the Mandarin of Ma (2003) => Cantonese
 • Tried out on CUHK students in Pilot Study I

• Back translation: E->C->E
QA/QC – Random Sub-sample
Check of Households Interviewed

• Follow-up calls to confirm answers on selected questions, e.g.
 – Annoyance - “Did surveyor ask you about…?”
 → Yes/ No
 – No. of rooms in household
 → Fill in exact no.
 – Quiet room?
 → Yes/ No
Noise Exposure Estimation

• Type of transport noise modeled
 – Road traffic

• Methodology
 – Noise mapping with respect to road traffic noise
 – Confidentiality of household addresses kept

• Noise metrics modeled
 – Road traffic – L_{DEN}, L_{night}
Technique of Noise Mapping

Input
- Propagation Path
 - Building footprints
 - Podiums
 - Barriers
 - Enclosures
 - Spot heights
 - Contour lines
 - Rivers
 - Slope tops/bottoms
 - Vegetation (ground absorption)
- Emitters
 - Railway tracks
 - Road centreline
 - Airport
- Traffic Model
 - # of vehicles
 - Speed
 - Vehicle weight

Processing
Noise Exposure Software
Calculates noise levels in different areas using inputs

Output
- Level of exposure estimated for various areas;
- 3-D visualization
- Obtain façade noise exposure of over 10,000 addresses
Example of Modeling Results
Façade Noise from Road Traffic
Key Questions

• Which noise annoys Hong Kong people most?
• How many people are affected?
• How does Hong Kong people’s response compare with that of others?
• Other than noise exposure, what other factors affect annoyance and sleep disturbance?
• What are the implications of these findings?
Which Noise Annoys HK People Most?

- “Highly Annoyed” = 8 to 10 on 0 to 10 scale

<table>
<thead>
<tr>
<th>Noise Source</th>
<th>% Highly Annoyed (HA)</th>
<th>% Highly Annoyed at Night (HAN)</th>
<th>% Sleep Highly Disturbed (HSD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Road traffic</td>
<td>7.9</td>
<td>4.95</td>
<td>4.15</td>
</tr>
<tr>
<td>MTR, trains or LRT</td>
<td>0.7</td>
<td>0.5</td>
<td>0.3</td>
</tr>
<tr>
<td>Aircraft</td>
<td>0.4</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>Industries/ factories/ machineries</td>
<td>0.5</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>Commercial activities</td>
<td>1.6</td>
<td>0.6</td>
<td>0.4</td>
</tr>
<tr>
<td>Construction/ demolition</td>
<td>3.4</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Renovation</td>
<td>10.8</td>
<td>0.5</td>
<td>0.6</td>
</tr>
<tr>
<td>Neighbor’s air conditioning</td>
<td>1.4</td>
<td>0.8</td>
<td>0.6</td>
</tr>
<tr>
<td>Neighbors</td>
<td>3.5</td>
<td>1.7</td>
<td>1.4</td>
</tr>
<tr>
<td>Playgrounds/sports ground</td>
<td>1.7</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>Outside animals</td>
<td>1.8</td>
<td>1.0</td>
<td>0.7</td>
</tr>
</tbody>
</table>
Key Questions

• Which noise annoys Hong Kong people most?
• How many people are affected?
• How does Hong Kong people’s response compare with that of others?
• Other than noise exposure, what other factors affect annoyance and sleep disturbance?
• What are the implications of these findings?
How many people in HK are affected?

- Percent households with most exposed side of dwelling exceeding noise criterion:
 - HK Planning Standard $L_{10,1h}$ 70 dBA: 28.9%
 - WHO L_{DEN} 65 dBA: 36.2%

- Number of adult population affected **

<table>
<thead>
<tr>
<th></th>
<th>% of Population</th>
<th>Confidence Interval (%)</th>
<th>Estimated Number of Population Aged 18 or Above (in thousands)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2009</td>
<td>2010</td>
</tr>
<tr>
<td>Highly Annoyed</td>
<td>7.9</td>
<td>±0.526</td>
<td>432.6-491.1</td>
</tr>
<tr>
<td>Highly Annoyed Night</td>
<td>4.95</td>
<td>±0.42</td>
<td>265.9-315.2</td>
</tr>
<tr>
<td>Highly Sleep Disturbed</td>
<td>4.13</td>
<td>±0.39</td>
<td>219.5-165.3</td>
</tr>
</tbody>
</table>

** With reference to most exposed side of dwelling
Exposure of the Hong Kong Population to Road Traffic Noise

- More than 35% of the population have the **most exposed side of their dwelling** exposed to $L_{DEN} > 65$ dB(A)

- **Note:**
 - * Most exposed side
 - * External facade
Key Questions

• Which noise annoys Hong Kong people most?
• How many people are affected?
• How does Hong Kong people’s response compare with that of others?
• Other than noise exposure, what other factors affect annoyance and sleep disturbance?
• What are the implications of these findings?
Comparing the HK Exposure - Highly Annoyed Curve with Miedema’s
Comparing the HK Exposure - % Highly Sleep Disturbed Curve with Miedema’s
Comparison of Hong Kong and Vietnam Curves
Key Questions

• Which noise annoys Hong Kong people most?
• How many people are affected?
• How does Hong Kong people’s response compare with that of others?
• Other than noise exposure, what other factors affect annoyance and sleep disturbance?
• What are the implications of these findings?
Statistical Analysis

- Binary logistics ordinal regression
 - Binary dependent variable: Highly Annoyed (HA) or not / Highly Sleep Disturbed (HSD) or not?

- With respect to road traffic noise
 - 24h (L_{DEN}) & at night (L_{NIGHT}) respectively

- Key predictor variables
 - Noise exposure - L_{DEN}, L_{night}

- Confounding factors (ordinal)
 - As found in previous studies, results described in next two slides
Factors Affecting whether the Respondent is Highly Annoyed

Results of binary logistic ordinal regression

<table>
<thead>
<tr>
<th>Description</th>
<th>Beta coefficient</th>
<th>Level of significance</th>
<th>Odds ratio</th>
<th>Cumulative Nagelkerke R Square</th>
<th>Change in Nagelkerke R Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noise exposure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noise exposure (L_DEN)</td>
<td>.74</td>
<td>.000</td>
<td>1.077</td>
<td>.058</td>
<td>/</td>
</tr>
<tr>
<td>Physical factors affecting noise exposure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Access to quiet room</td>
<td>-.758</td>
<td>.000</td>
<td>.469</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Closing window</td>
<td>.257</td>
<td>.000</td>
<td>1.293</td>
<td>.088</td>
<td>.03</td>
</tr>
<tr>
<td>Number of household</td>
<td>-.275</td>
<td>.005</td>
<td>.760</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Personal factors affecting perception</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Satisfaction with neighbourhood environment</td>
<td>-.602</td>
<td>.000</td>
<td>.548</td>
<td>.119</td>
<td>.031</td>
</tr>
<tr>
<td>Ownership</td>
<td>.218</td>
<td>.008</td>
<td>1.244</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other personal factors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interviewee's noise sensitivity</td>
<td>.453</td>
<td>.000</td>
<td>1.573</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hearing problems</td>
<td>.481</td>
<td>.012</td>
<td>1.618</td>
<td>.140</td>
<td>.021</td>
</tr>
<tr>
<td>Education Level</td>
<td>.132</td>
<td>.032</td>
<td>1.141</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Odds Ratio

- > 1
- < 1
Factors Affecting whether the Respondent is Highly Sleep Disturbed

- Results of **binary logistic ordinal regression**

<table>
<thead>
<tr>
<th>Description</th>
<th>Beta coefficient</th>
<th>Level of significance</th>
<th>Odds ratio</th>
<th>Cumulative Nagelkerke R Square</th>
<th>Change in Nagelkerke R Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noise exposure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noise exposure (L_DEN)</td>
<td>.086</td>
<td>.000</td>
<td>1.089</td>
<td>.057</td>
<td></td>
</tr>
<tr>
<td>Physical factors affecting noise exposure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Access to quiet room</td>
<td>-.821</td>
<td>.000</td>
<td>.440</td>
<td>.083</td>
<td>.026</td>
</tr>
<tr>
<td>Number of household</td>
<td>-.350</td>
<td>.014</td>
<td>.704</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Personal factors affecting perception</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Satisfaction with neighbourhood environment</td>
<td>-.460</td>
<td>.000</td>
<td>.631</td>
<td>.099</td>
<td>.016</td>
</tr>
<tr>
<td>Other personal factors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interviewee's noise sensitivity</td>
<td>.715</td>
<td>.000</td>
<td>2.044</td>
<td>.139</td>
<td>.04</td>
</tr>
<tr>
<td>Education level</td>
<td>.201</td>
<td>.012</td>
<td>1.222</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Odds Ratio
- > 1
- < 1
Key Questions

- Which noise annoys Hong Kong people most?
- How many people are affected?
- How does Hong Kong people’s response compare with that of others?
- Other than noise exposure, what other factors affect annoyance and sleep disturbance?
- What are the implications of the study findings?
 - From source control to innovative building design
 - Recognize limitation of over-reliance on noise reduction
 - Crafting a pleasant holistic sound environment
Ways to Reduce Noise Exposure

1. Source - traffic volume & composition
2. Noise Path - noise barriers
3. Receiver - building & window design
How Many Cars Have to be Removed?

- Assuming the noise criterion is $L_{DEN} \ 65 \ \text{dB}(A)$

To reduce noise by 3 dB, traffic flow has to be cut by half
THE JOINT HKIOA-PolyU ONE-DAY SYMPOSIUM

RESEARCH, ASSESSMENT AND DEVELOPMENT OF APPLYING INNOVATIVE BUILDING DESIGNS FOR NOISE MITIGATION- THE LATEST TRENDS

Gold Sponsor
KINETICS
Noise Control

Silver Sponsor
ENVIRON
Noise Exposure – Effect Curves

% Highly Annoyed

Noise Level

Western Cities

Hong Kong

A

B

X
Use of Exposure – Effect Curve for Noise Standard Setting

WHO Community Noise Guidelines (1999):
“Serious annoyance”

Percent highly annoyed (HA) [%]

Noise level (L_{den,24h}) [dBA]
Influence of Slope of Exposure-Effects Curve on Annoyance

Miedema Curve

Hong Kong
What does this study say?

- Effect of noise exposure is limited
- Intensifying annoyance
 - Ill-health
 - Noise sensitivity
- Moderating annoyance
 - Good neighborhood environment
 - Access to a “quiet room”
Human annoyance at home and outside their residence and interactions among the effects

- Dwelling
- Neighbourhood
- Community
Wanted and Unwanted Sound in Cities

- **Unwanted - Noise**
 - Road traffic
 - Industries

- **Wanted**
 - Bird songs
 - Water sound
wanted ‘natural sounds’

ambient generated by distant traffic

occasional noticeable noise peaks

Partial Masking

Source: A.L. Brown
UK’s Department for Environment, Food and Rural Affairs

Research into the Practical and Policy Applications of Soundscape Concepts and Techniques in Urban Areas (October 2009)

Approaches to Soundscape Design

- Control negative sound sources
 - Remove, buffer and mitigate
- Preserve and enhance existing positive sound sources
- Add sounds to alter the soundscape or detract attention from existing soundscape features
 - Water sounds, sonic art installation, etc.
Watch Out - Noise-related Health Risks are Increasing (Irene van Kamp, 2010)
Thank you.