Appendix A1

Summary of Ground Investigation Records

Hole No.	Easting	Northing	Ground Level (mPD)	Orientation (degrees)	Hole Depth (m)	From Depth (m)	To Depth (m)	Description	Weathering Grade
13713/P-1A	819604.7	835636.7	+51.82	06	1.85	0.00	1.85	Soil	
13713/P4	819643.0	835525.0	+70.20	06	14	0.00	14.00	Soil	,
13713/P5_A	819591.8	835180.8	+45.70	06	1.17	0.00	1.17	Soil	
13713/P5-B	819591.8	835480.6	+45.30	06	1.07	0.00	1.07	Soil	
2878/K-2	819736.8	835487.1	+110.8	06	30.25	0.0	15.0	(C.W.V) Clayey silt with some gravels	2
2878/K-2						15.0	19.75	(C.W.V) Silty fine sand with some gravels	5
2878/K-2						19.75	24.6	Fine grained moderately metamorphosed weathered volcanic with joints	3
2878/K-2						24.6	30.25	Fine grained, slightly to moderately weathered volcanic with some joints	2/3

Appendix A2

Ground Investigation Borehole Logs

HOUN	ID '	IN	VÉ	ST	IG	AT	IO	N	Ľ	LOG 13	713	·
ROJEC								NOR EAST	TH: -====================================	Ales 45 63 6.70 9604.70	HOLE NO.:	
JUZH LOH	IG INC), Es	7473	÷ D2	UZL	oprn=	~·[·	INCL	: <u>V</u> &	VEL: TS1.82M -PTICAL		
	41214		•	1				ROT	OF H		NG MEDIUM SHEET	
CASING TOOL DIA DIA DEPTH TYPE		IN-SITU TEST RESULTS	W.L. Reading	DEPTH M	mPD	RUNS	CORE RECOV.	R. Q. D. %	LEG/ END		RIPTION	STRAT
Ţ. Ž. — Ž.			29/12	1.85	51.8					SOIL.	CK SURTACE	7108
			Mazie		Φ	S. P. T.				ermeability Test	HECKED BY: 51 13 L	

The state of the s

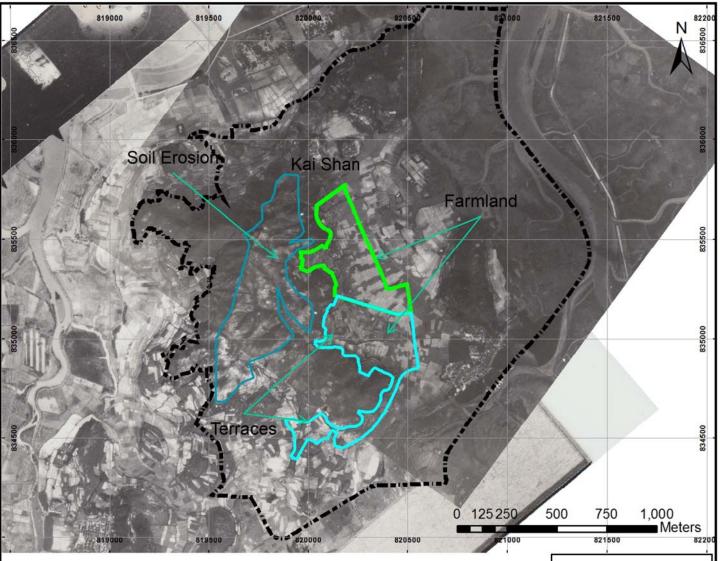
.

SOUND "INVESTIGATION LOG COORDINATES HOLE NO .: ROJECT: NORTH: 35525.00 EAST: 19643.00 P4 USH LONG IND, ESTATE DEVEL OPMENT G./8.8. LEVEL: +170.20 FLUSHING MEDIUM SHEET NO: TYPE OF HOLE : OCATION: YUZN LONG. 1115776 DOIND. CORE RECOV IN-SITU TEST SAMPLES LEG. Я. Q. D. DESCRIPTION STRATA W.L. Reading LEVEL mPD RUNS DEPTH EXISTING GRO, SUPTACE 0.00 +793 COIL HM. MIL TOUCH ROCK SURFACE AT 14.00 M. PM: 11.70 14.00 Bottom of Hole. Permeability Test CHECKED BY: 5181/2011 Undisturbed Samples Disturbed Samples HE ARCHITECT/ENGINEER: CONTRACT NO. : CONTRACTOR: IMPACT FOUNDATIONS (H.K.) LTD. 307, SHELL HOUSE, QUEEN'S RD. C., HONG KONG. TEL. 6.263001 TELEX: 83508 GROUT HX

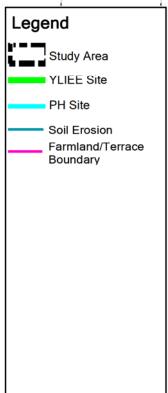
j}	101	UN	ID	IN	VE	SI	IG	AT	10	N	L	.OG			4.1 4.1
PI	ROJ	EC	Τ:							NOR	TH:	1165 15460 20 1591.80	HOLE NO	.:	
	LUZH	L6H	K I	rial e	5707	Z D	3v5	Lopin	12m7	G./5/1	B. LEV	1371.011 1EL: 45.70 -1171.64L	P.5-A		ŀ
Lo	CATIC	DN:	ותמטו	LONG			,]	TYPE RO	OF H			OF	10:
EN MUD LURN	CASING DIA DEPTH	TOOU DIA TYPE	IN-SITU TEST SAMPLES	IN-SITU TEST RESULTS	W.L. Reading	DEPTH m	LEVEL mPD	AUNS	COHE RECOV.	R. Q. D. %	LEG. END		RIPTION		STRATA
	/					0.00	±45.7	P				Exizind to	Dy SURJA	CEN	-/-
					AM:							SOIL.			
	NAC										17:5				
	100				1						1, 4			·	
					0.33m						13				7105
											1,1	TOUCH RO	CK SHE	FACT	
					23/11	1.17					; `	47 1.17	Μ.		_/
	1.71											<i>/</i>			
												L Botto	n of Hol	e.	-
															-
	Č.														-
5.												} 	•		-
A		 												,	-
						1									
•	ļ														_
															-
ز															-
															-
						.									-
															-
															-
				100	M Maz	l l	1	S. P.				Permeability Test	CHECKED BY		
C	ONTR		ed Sample Sample	s .	J Jar		Φ	Vane	Test	IIE DATE		Permeability Test Hand Excavation	CHECKED BY:		
T	ONTR						•			START	-				
	Gran		2) (Pa	IMPAC 307, SHE	T FOU	NDATI	ONS (H.K.)	LTD.	COMP	LETEC	0: 23/11	,		
-	四四四	(CT any pur	53001 J	FIFY, AT	508 GRO	XH דנונ	1,5,10,				1		

RO	UN	ID	IN	VE	Sī	1G	AT	10	N	ľ	.OG	artina primpi artina d	¥ Fa J
ROJ Yuzn			IND., E	=<7 <i>/</i> 8	72	DSQ	०७४।	frner	G./S.f	TH:	ATES 2548060 19591.80 VEL: T.45.30 2710AL	PS-B.	
OCATIO	N:	16121	1 Lon	9					TYPE	OF HO		NG MEDIUM SHEET I	
CASING DIA DEPTH	TOOL DIA	IN SITU TEST SAMPLES	IN-SITU TEST RESULTS	W.L. Reading	DEPTH M	LEVEL mPD	RUNS	CORE RECOV.	Я. Q. D. %	LEG. END	DESC	RIPTION	STRATA
	1172	SAMPLES	HESULIS		CCO	+45·3	7				CHISTING	BEDY SUBJAC	2.7
N/-C	J.			21/							SOIL. TOUCH	ROCK SURTOC	2017
			`	27/11	1.0%						 		
											L Bottom	of Hole.	
ALE Q U	Indisturbo	ed Samples		M Muz I jar	tier		S. P. T Vane	Fest	HE		Permeability Test Hand Excavation	CHECKED BY: 5 P. U	lum
CONTR	ACTO	R:	1MPAC 307, SHE	T FOU	NDATI	ONS (H.K.) I	TD.	DATE START	-	25/11/78	ARCHITECT/ENG	

(A 12 (1)	CONTRACT	No	402/80
X OH . IU	(CACHINE II INCALL II	ran.	302 00


);LTD.	DRILLHOLE R	OR JOB NUMBER 27/2/38 (1) SITE NAMEBORROW AREA KNORTHWEST NOT HOLE NUMBER K2 DATE FROM 28-12-80TO 2-1-81	
RIG TYPEDIAM		E _19736	Z. 1	
RIG NUMBER	DR2	N 3548	7.1	SHEET 1 OF 3
ORERATOR:		HOLE DIAMETER	<u> </u>	CROUND LEVEL + 170.8 mPD
METHOD ROT	ARY DRILL	CASING BIAMETE	R	ORIENTATION 90°
Drilling. Drilling. Drogress Casing debth Size	» × "	D Tests Samples	Depth (metres) Reduced -level	
30/12			0	
in the control of the		H=37	ABLE ABLE	

1. W.D. CONTRACT No. 4027


	1.11.12. 0011212121	WORKS ORDER / /
CONTRACTOR'S NAME	DRILLHOLE RECORD	OR JOB NUMBER <u>&7/ 2/ 3.8 4/7</u>
ENPACK (H.K.) LTD.		SITE NAME BORROW AREA KNORTH WEST N.T
		HOLE NUMBER K2
RIG TYPEDIAMOND CORE D	CO-ORDINATES E 19736.8	DATE FROM 28-12-80 TO 2-1-8]
RIG NUMBER DR2	N 35487.1	SHEET OF 3
OPERATOR	HOLE DIAMETERNX	GROUND LEVEL + 1/0.8 mPD
METHOD BUTARY DRIL	L CASING DIAMETER	ORIENTATION 90°
1 -6 16 10 14 1/- 1 - 1 2 2	Fracture index Index Seat state Copith (metres) Reduced tevel Legend	Description e de C
The desired and the second and the s	N=35 2 10 × - × 6	REDDISH BROWN CLAYEY SILT WITH SOME GRAVELS
19:00 60 13:40m 8:00 2:20m	3	REDDISH BROWN FINE - GRAINED MODERATELY METAMORPHOSED WEATHERED WOLCANIC WITH
1100	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	WEATHFRED VOLCANIC WITH TOINTS TOFF?
	LINER SAMPLE ▼ WATER TABLE STANDARD: ▼ PENETRATION TEST:	REMARKS FIELD INSTALLATION:

Appendix B

Aerial Photograph Interpretation

- Farmland and terraces on the flat land surrounding the foot hills occupied the Public Housing (PH) Site and Yuen Long Industrial Estate Extension (YLIEE).
- · No man-made structures were identified.
- A small number of graves were identified at the foot hills adjacent to the proposed development site.
- Sparse vegetation was observed across the natural terrain to the west of the PH Site and YLIEE.
- Soil erosion was observed mainly on the hill top.

Job Title

Agreement No. CB20120293

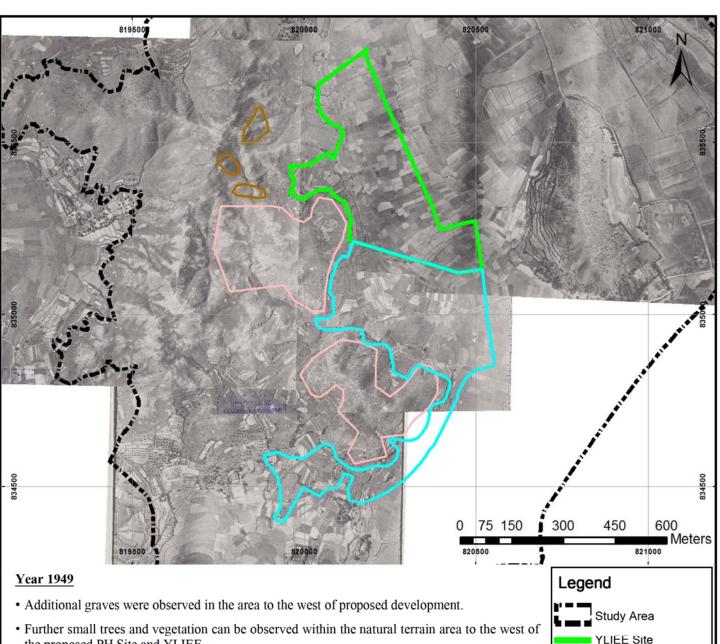
Planning and Engineering Study for the Public Housing Site and Yuen Long Industrial Estate Extension at Wang Chau Figure Title

Aerial Photo Interpretation (Sheet 1 of 8)

ARUP

Ove Arup & Partners Hong Kong Limited

Scale N.T.S.


Job No.

Om. ELCF Date 09/2012

226464

Figure No.

Approved SWM

- the proposed PH Site and YLIEE.
- Further rock outcrops and boulders were observed in the natural terrain to the west of proposed development sites.
- No other significant changes were observed.

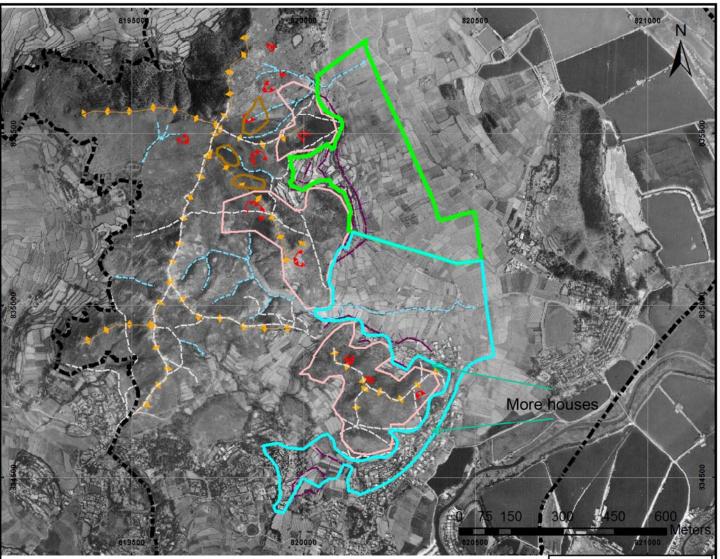
Job Title

Agreement No. CB20120293

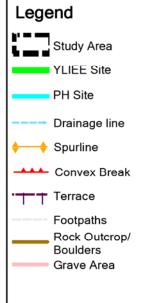
Planning and Engineering Study for the Public Housing Site and Yuen Long Industrial Estate Extension at Wang Chau

Aerial Photo Interpretation (Sheet 2 of 8)

Ove Arup & Partners **Hong Kong Limited**


Scale N.T.S.

> ELCF Date Approved SWM 09/2012


Job No.

226464

Figure No.

- The majority of the land within the PH and YLIEE sites and adjacent areas was still used for agricultural purposes. However, more low-rise houses were observed, especially concentrated in the southern portion of the PH site. Low-rise structures were observed within the agricultural area.
- Natural incised drainage lines were observed predominantly in the central sites and northern
 portions of the natural terrain hillside orientated towards the PH and YLIEE sites. These
 drainage line converge forming two drainage lines, one passing through the PH site, and one
 passing through the YLIEE site. Most of the drainage lines identified were NE to SW trending
 with some minor drainage lines trending NW to SE.
- No recent landslide scars were observed but morphological depressions were noted in the hills to the West of the PH and YLIEE sites, which may be related to previous landslide activities.
- Rock outcrops and boulders were observed along the major drainage lines and spurlines suggesting shallow rockhead level in these areas.
- More graves were mainly distributed over the small hills and foot slope.
- Footpaths were mainly observed along the ridgelines and along the foot hills.
- · No other significant changes were observed

Job Title

Agreement No. CB20120293

Planning and Engineering Study for the Public Housing Site and Yuen Long Industrial Estate Extension at Wang Chau Figure Title

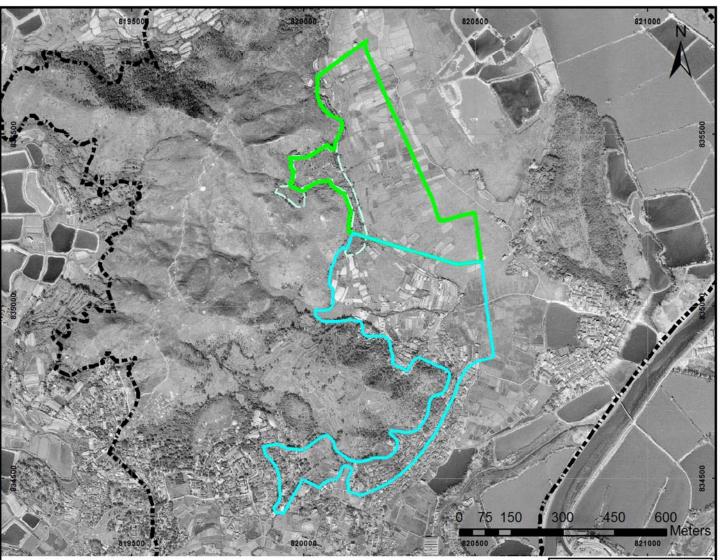
Aerial Photo Interpretation (Sheet 3 of 8)

<u>ARUP</u>

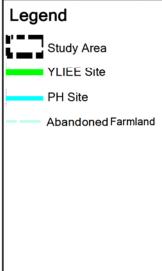
Ove Arup & Partners Hong Kong Limited

Scale N.T.S.

Drn. ELCF Date 09/2012


Chd. AN

Approved SWM


Job No.

226464

Figure No.

- A significant portion of farmland and terraces at foot hills remained active within the YLIEE.
- More houses were observed in the southern portion of the proposed PH Site.
- More vegetation was observed to the west of the PH Site.
- No other significant changes were observed.

Job Title

Agreement No. CB20120293

Planning and Engineering Study for the Public Housing Site and Yuen Long Industrial Estate Extension at Wang Chau Figure Title

Aerial Photo Interpretation (Sheet 5 of 8)

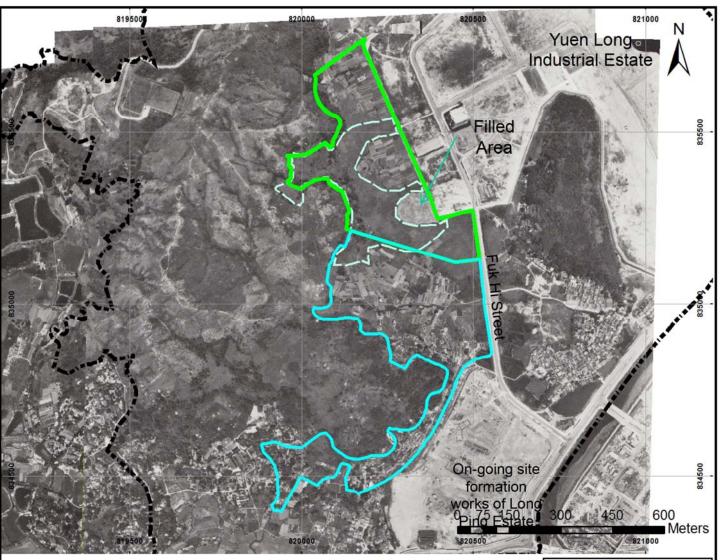
<u>ARUP</u>

Ove Arup & Partners Hong Kong Limited

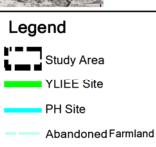
Scale N.T.S.

Dm. ELCF Date

Cnd.


09/2012

Approved SWM


Job No.

226464

Figure No.

- A significant portion of farmland and terraces in the foot hills appear to have been abandoned.
- Part of the southern portion of the YLIEE has been filled.
- Due to the site formation work to the east of the PH Site, some of the houses were cleared.
- The Yuen Long Industrial Estate was being constructed and Fuk Hi Street was formed within the east of the YLIEE.
- · No other significant changes were observed.

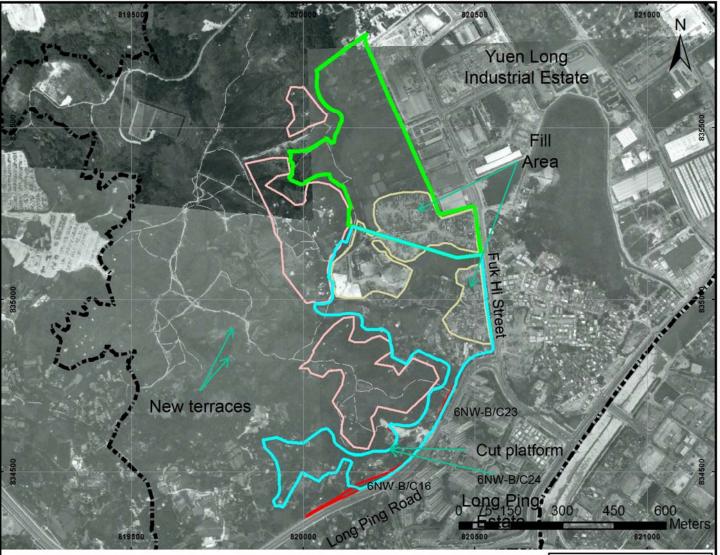
Job Title

Agreement No. CB20120293

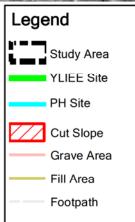
Planning and Engineering Study for the Public Housing Site and Yuen Long Industrial Estate Extension at Wang Chau Figure Title

Aerial Photo Interpretation (Sheet 5 of 8)

ARUP


Ove Arup & Partners Hong Kong Limited

Scale N.T.S.


m. ELCF Date 09/2012

AN Approved SWM

Job No. 226464

- In the northern portion of the PH Site and southern portion of the YLIEE, a significant portion of agricultural land was filled and converted into container storage areas.
- More low-rise houses were observed to the east of the PH Site.
- To the southeast of the PH Site, site formation work was completed and Long Ping Estate and Long Ping Road were built. The associated cut slopes 6NW-B/C16 and 6NW-B/C23 were observed.
- Man-made feature 6NW-B/C24 and a cut platform were observed in the southern portion of the PH Site.
- Construction of the Yuen Long Industrial Estate had been completed.
- Fewer houses were observed in the southern portion of the PH Site.
- Two areas of new terrace and some new graves were observed in the natural terrain to the west of the PH Site.
- More dense vegetation cover was observed to the west of the PH Site.
- Foot paths were more extensively formed on the natural terrain.
- · No other significant changes were observed.

Job Title

Agreement No. CB20120293

Planning and Engineering Study for the Public Housing Site and Yuen Long Industrial Estate Extension at Wang Chau Figure Title

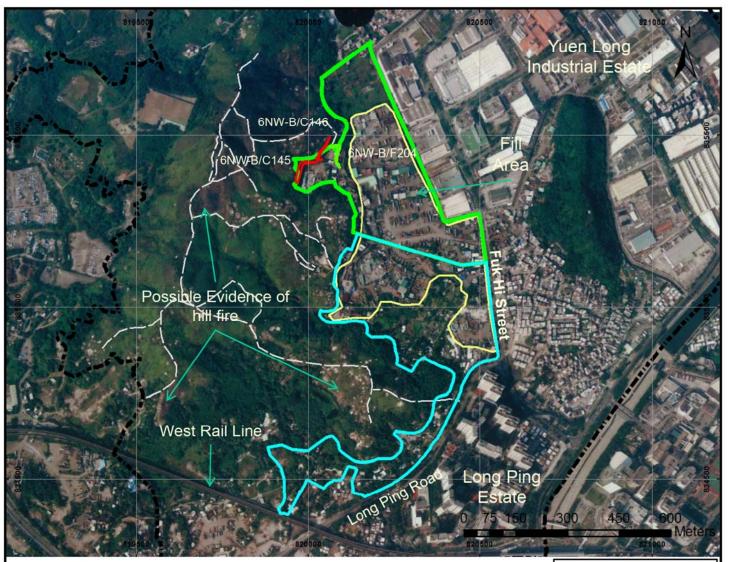
Aerial Photo Interpretation (Sheet 6 of 8)

<u>ARUP</u>

Ove Arup & Partners Hong Kong Limited

Scale N.T.S.

m. ELCF Date 09/2012


Chd. A

Approved SWM

Job No.

226464

Figure No.

- More agricultural land was filled and container storage area became the major land use within the PH Site and YLIEE.
- Man made features 6NW-B/F204, 6NW-B/C145, 6NW-B/C146 were built by 2010.
- The West Rail Line was observed adjacent to the south of the PH Site.
- More graves were observed throughout the natural terrain.
- Those areas near graves were poorly vegetated which was possibly caused by hill fire.
- Generally more dense vegetation cover was observed to the west of the PH Site.
- · No other significant changes were observed.

Legend

Fill Area

Job Title

Agreement No. CB20120293

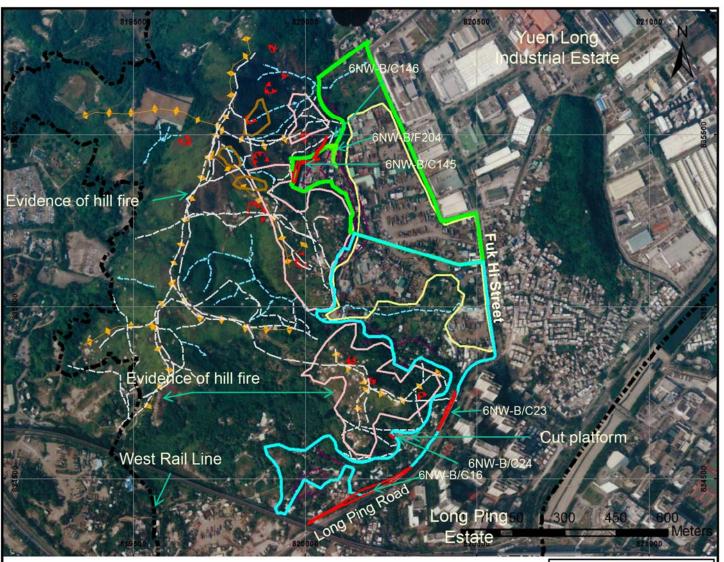
Planning and Engineering Study for the Public Housing Site and Yuen Long Industrial Estate Extension at Wang Chau igure Title

Aerial Photo Interpretation (Sheet 7 of 8)

ARUP

Ove Arup & Partners Hong Kong Limited

Scale N.T.S.


n. ELCF Date 09/2012

N Approved SWM

Job No.

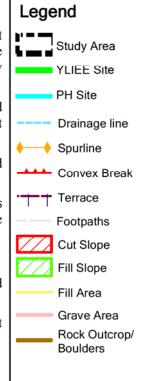

226464

Figure No.

Summary

- The PH Site and YLIEE were largely composed of agricultural land prior to 1973. In the past 20 years, most of the agricultural areas were filled and became a container storage area in the northern portion of the PH Site and the YLIEE. The southern portion of the PH Site was mainly residential areas from the 1960s until present.
- Yuen Long Industrial Estate and Fuk Hi Street were built by 1984. More residential areas and Long Ping Road were observed to the east and northeastern portion of the PH Site. The West Rail Line was built by 2010.
- Man-made features 6NW-B/C16, 6NW-B/C23, 6NW-B/C24, 6NW-B/C145, 6NW-B/C146 and 6NW-B/F204 were formed by 2010.
- Graves were observed to the west of the PH Site and YLIEE. Prior to 1963 the grave area was
 relatively small compared to present. In the past 20 years, more concrete based graves were
 observed in the hills. Evidence of hill fire near those graves was observed.
- No recent landslide scars have been observed but morphological depressions were noted.
- Incised drainage lines starting within the natural terrain with flow towards the PH Site and YLIEE.
- Streams were observed across the northern portion and middle part of proposed development sites in 1960s.

Job Title

Agreement No. CB20120293

Planning and Engineering Study for the Public Housing Site and Yuen Long Industrial Estate Extension at Wang Chau Figure Title

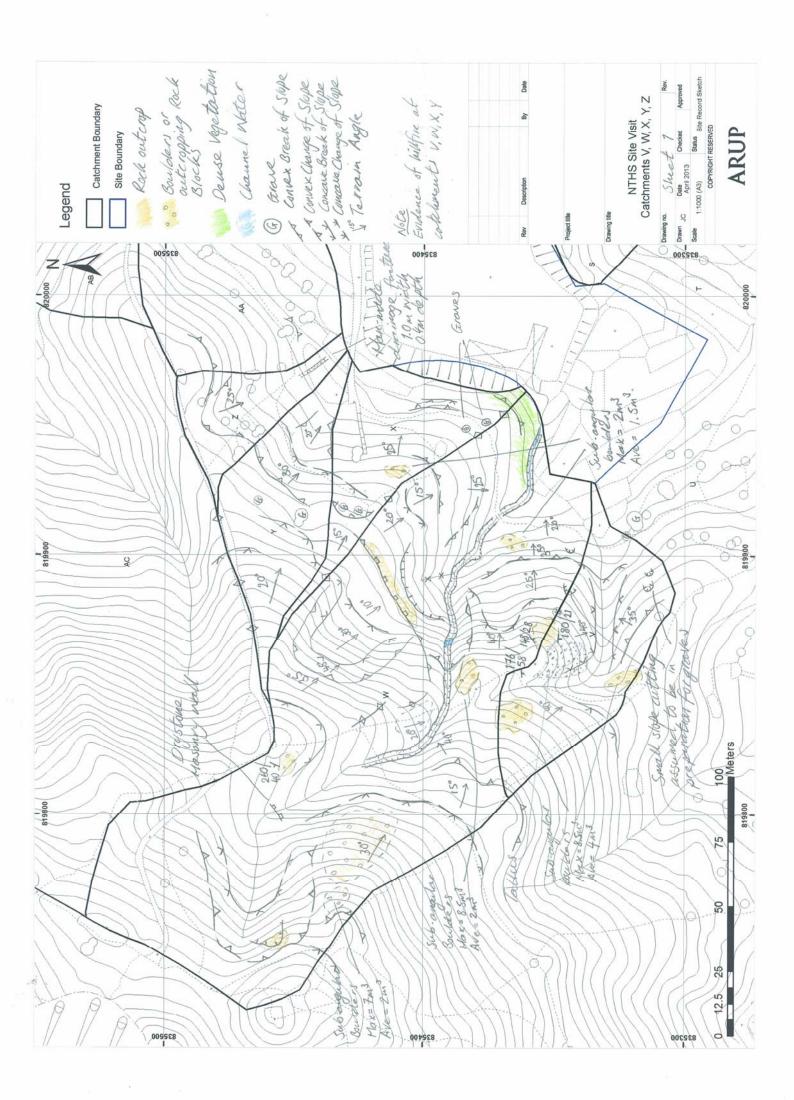
Aerial Photo Interpretation (Sheet 8 of 8)

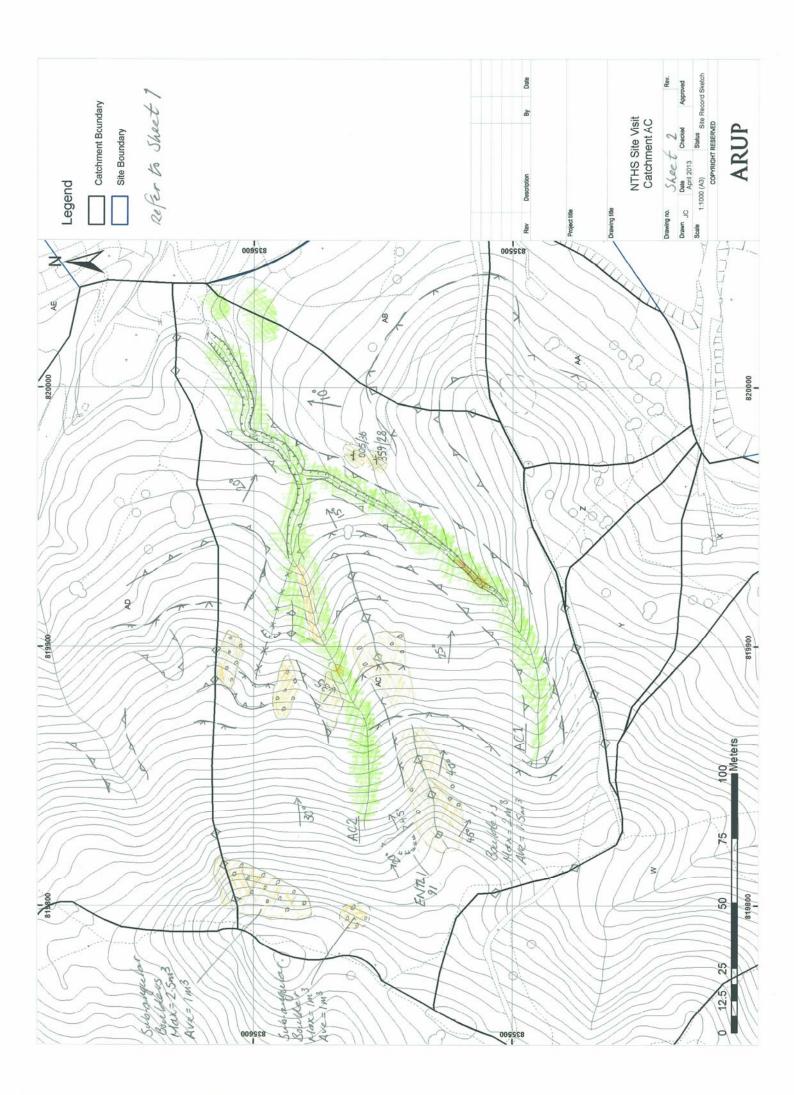
ARUP

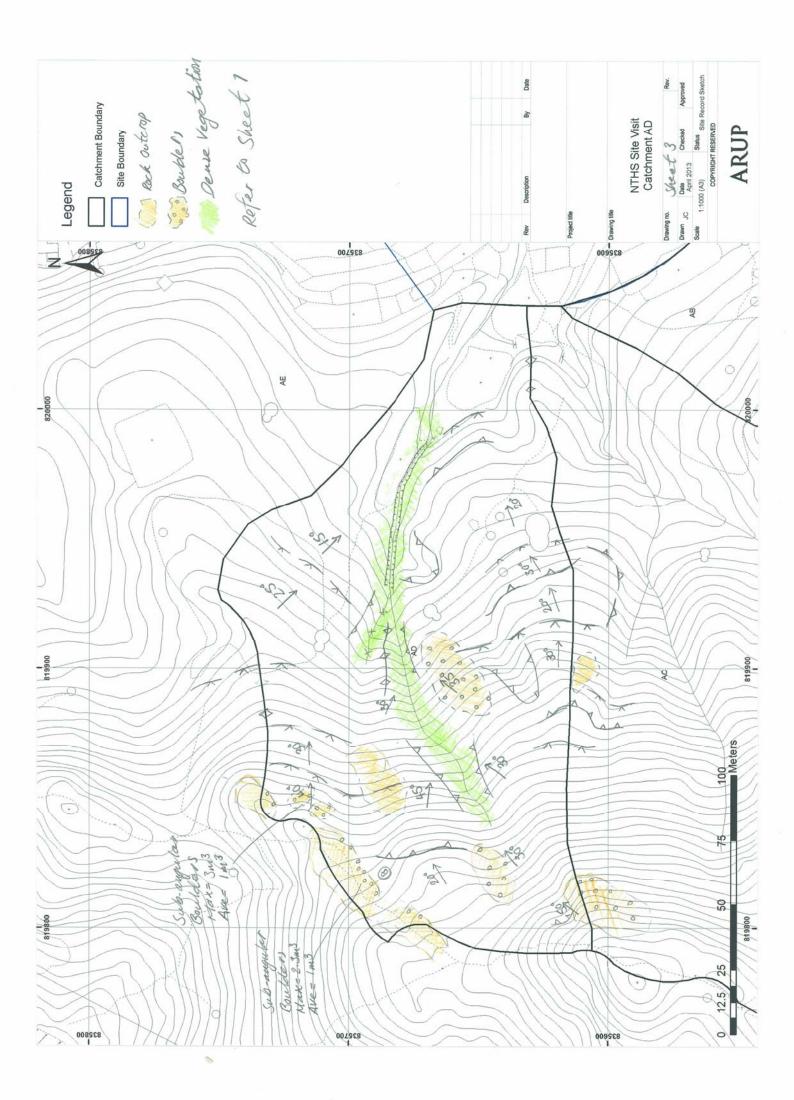
Ove Arup & Partners Hong Kong Limited

Scale N.T.S.

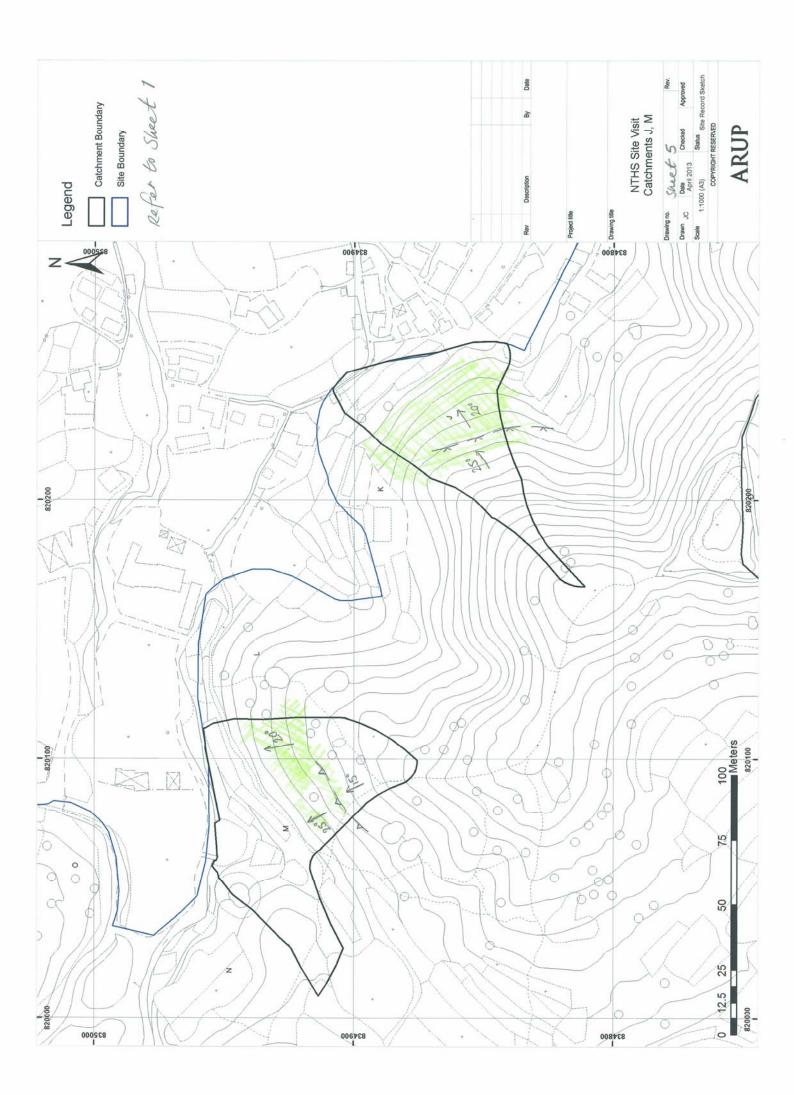
n. ELCF Date 09/2012 Chd. AN Approved SWM

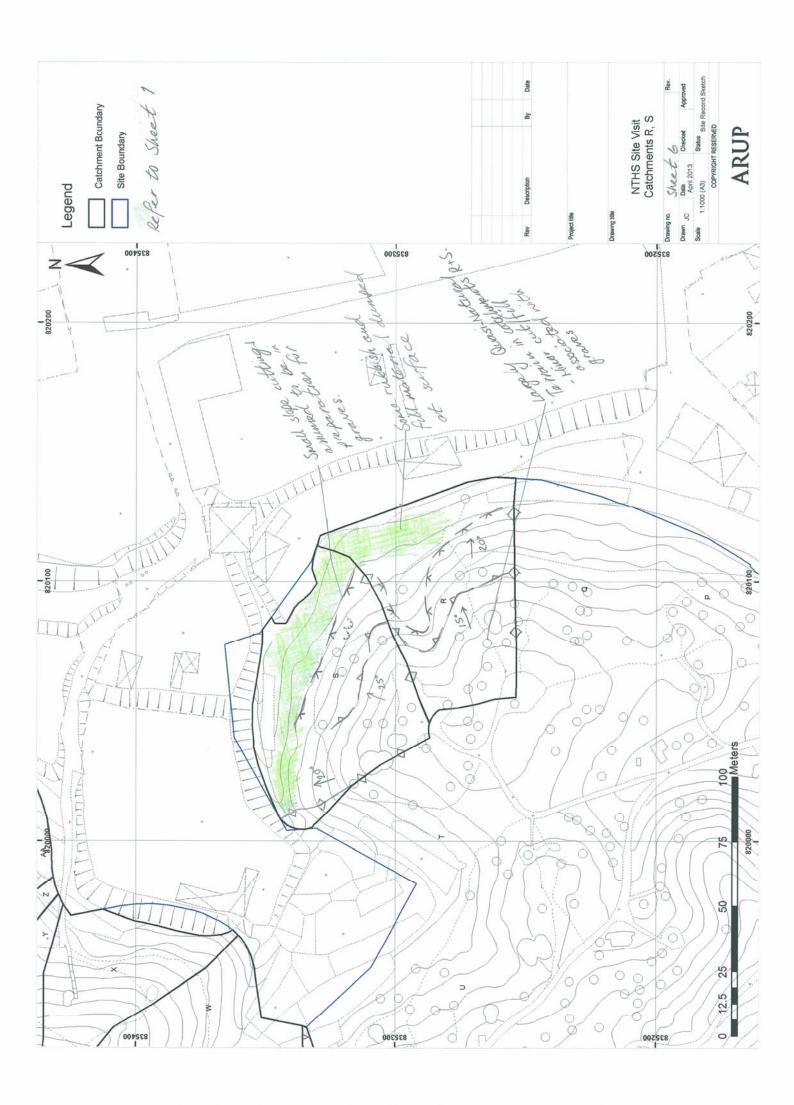

Job No.


226464


Figure No.

Appendix C


Detailed Field Mapping

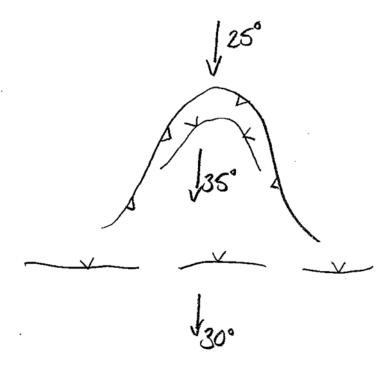




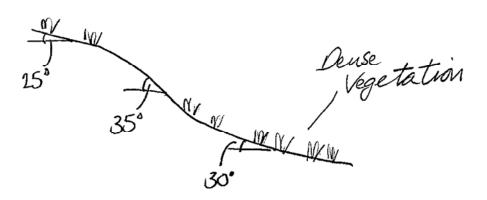
Appendix D1

Landslide Proforma Record Sheet

AR	RUP .	Hong Kon	& Partners g Limited - lation Sheet	Job No:	226464	Sheet No:	1	Revision:	-
Job Title:	Agreement No. CB20120 Planning and Engineering and Yuen Long Industrial	Study for the F		Mapping by:	JC	Checked by.	JH	Date:	Apr-12
Subject:	Landslide Mappir	ng Records	,						
	SECTION 1: So		erence Data		on of ENT	'LI 06NWB008	34E		
	Landslide Ref:		LSAD-1 (EN	ITLI 06NWB	0085E)				
	Coordinates:		E819936			N835666		_	
	Date:		24/4/2012			Weather: S	Sunny and D	Dry	
	Inspecting Person	onnel:		,					
	SECTION 2: B	asic Land	Islide Data						
	Lithology within	Landslide	Scarp:				6		
	Main Types: Co	olluvial Me	ta-Siltstone			_	ill Colluvium	- 100	
	Source Dimensi	ons (m):					Saprolite Rock	-	
	Length: [measured norm		9 tour)	Width: [(measured a	along cont	four) e of Source:	Depth: 94.25	2 m ³)	
	Volume of Entrainment/Deposition								
	Deposition in source area Entrainment along debris trail Deposition along debris trail Others Comments: Relict landslide feature Vegetated O to the stand								
	Vegetation Cove	<u>er</u>	(tick one)						
	Bare Low Shrub Tall Shrub				√	Plan	tation/Trees		
	Slope Angle (°):								
	Above scar:		25	. Below	scar:	35_0	Seneral	30	
	If the angle below b	oulder > 50°	(i.e. the boulde	r rests on a ledg	ge), enter the	height of ledge (m):		
	Travel Path:							(tick ana)	
	•		hazards at slo	ope toe:				(lick one)	
	L. Shrub + Grass T. Shr								


Hong Kon	& Partners g Limited - ation Sheet	No: 226464	4 Sheet No:	2	Revision:	¥
Job Title: Agreement No. CB20120293 Planning and Engineering Study for the Public Housing Site and Yuen Long Industrial Estate Extension at Wang Chau		oing by: JC	Checked by.	JH	Date:	Apr-12

Subject: Landslide Mapping Records


SECTION 4: Schematic / Photograph

Sketch the landslide scar and debris run-out trail

<u>PLAN</u>

SECTION

A I I I P Hong	Arup & Partners Kong Limited - alculation Sheet	Job No:	226464	Sheet No:	3	Revision:	r:
Job Title: Agreement No. CB20120293 Planning and Engineering Study for t Site and Yuen Long Industrial Estate Chau	the Public Housing	Mapping by:	JC	Checked by.	JH	Date:	Apr-12

Subject: Landslide Mapping Records

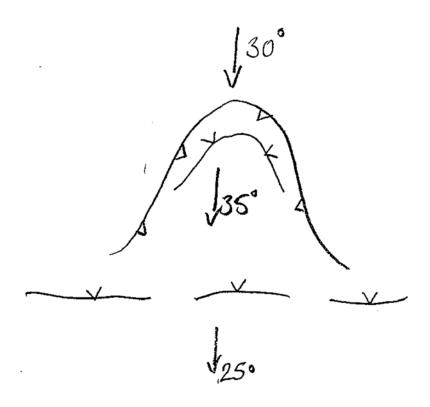
SECTION 4: Schematic / Photograph

Sketch the landslide scar and debris run-out trail

PHOTOGRAPH(S)

Photo above: Re-vegetated ladslide scar is at the hillslope.

AR	RUP	Hong Kon	& Partners g Limited - lation Sheet	Job No:	226464	Sheet No:	1	Revision:	2
Job Title:	Agreement No. CB20120 Planning and Engineering and Yuen Long Industrial	Study for the I		Mapping by:	JC	Checked by.	JH	Date:	Apr-12
Subject:	Landslide Mappin	ng Records	,						
	SECTION 1: So	-	erence Data		on of ENT	'LI 06NWB008	34E		
	Landslide Ref:		LSAD-2 (EN	ITLI 06NWB	0084E)				
	Coordinates:		E819892			N835631		_	
	Date:		24/4/2012			Weather: S	Sunny and D	Dry	
	Inspecting Pers	onnel:		,					
	SECTION 2: B	asic Land	Islide Data						
	Lithology within	<u>Landslide</u>	Scarp:				% Fill	_	
	Main Types: Co	olluvial Me	eta-Siltstone			_	 Colluvium Saprolite	100	
	Source Dimensi	ions (m):					Rock	-	
	Length: (measured norm		8 tour)	Width: [(measured a	_	9 four) e of Source:	Depth: 75.40	2 m ³)	
	Volume of Entra	ninment/D	eposition			0			
	Deposition in so Entrainment alo Deposition along Others	ng debris	trail	0 0 0		Comments: Relict landsl Vegetated	ide feature		
	Vegetation Cov	e <u>r</u>	(tick one)						
	Bare Low Shrub Tall Shrub			Grass rub + Grass rub + Grass	√	Plan	tation/Trees	;	
	Slope Angle (°):								
	Above scar:		30	. Below	scar:	35 (General	25	
	If the angle below b	oulder > 50°	(i.e. the boulder	r rests on a ledg	ge), enter the	e height of ledge ((m):		
	Travel Path:							(tick one)	
	Viable travel par (See Appendix		hazards at slo	ope toe:			′es lo	√	
	Travel path veg	etation typ	e and densit	y:	Dense bru	ısh, with trees	at foot slop	es	


ARUP Ove Arup & Partners Hong Kong Limited - Calculation Sheet	Job No:	226464	Sheet No:	2	Revision:	<u>.</u>
Job Title: Agreement No. CB20120293 Planning and Engineering Study for the Public Housing Site and Yuen Long Industrial Estate Extension at Wang Chau	Mapping by:	JC	Checked by.	JH	Date:	Apr-12

Subject: Landslide Mapping Records

SECTION 4: Schematic / Photograph

Sketch the landslide scar and debris run-out trail

PLAN

SECTION

35°

Deuse Vegetation

Vegetation

Dramage

Channel

A I I I P Hong	Arup & Partners Kong Limited - alculation Sheet	Job No:	226464	Sheet No:	3	Revision:	r:
Job Title: Agreement No. CB20120293 Planning and Engineering Study for t Site and Yuen Long Industrial Estate Chau	the Public Housing	Mapping by:	JC	Checked by.	JH	Date:	Apr-12

Subject: Landslide Mapping Records

SECTION 4: Schematic / Photograph

Sketch the landslide scar and debris run-out trail

PHOTOGRAPH(S)

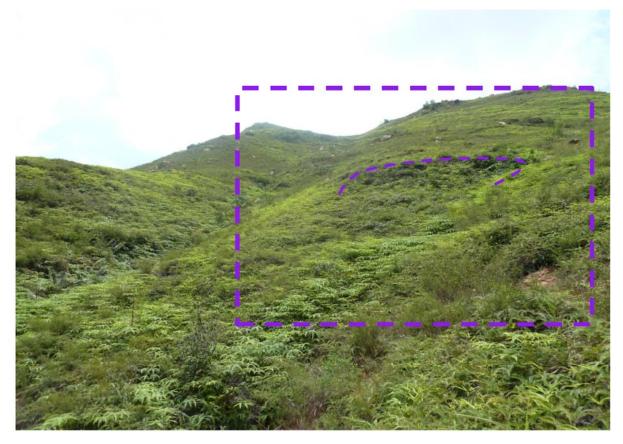
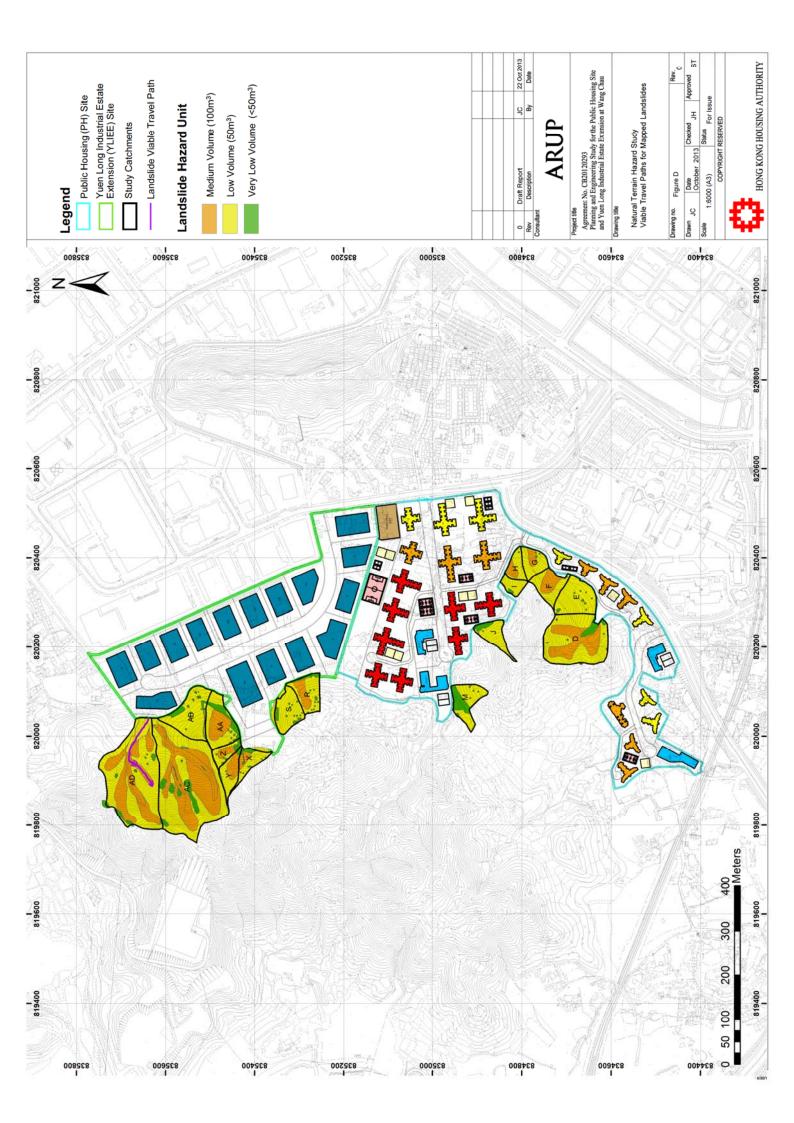
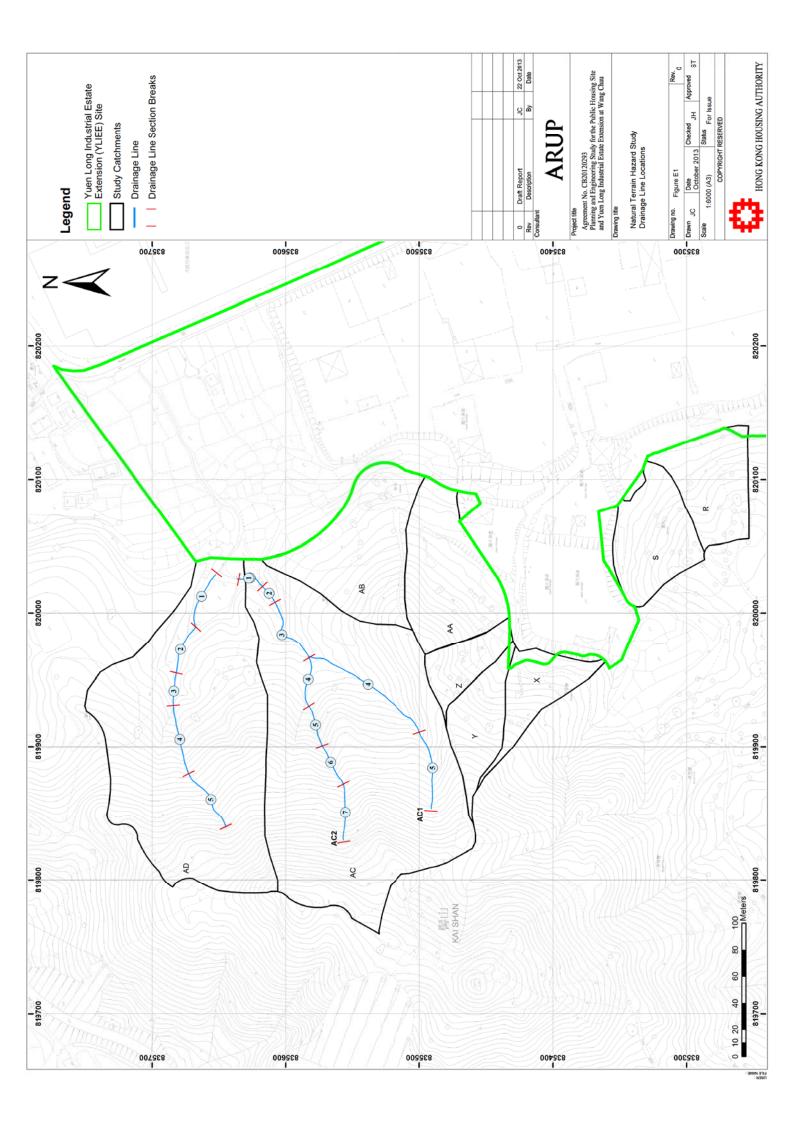



Photo above: Re-vegetated landslide scar was observed.


Appendix D2

Viable Travel Paths for Mapped Landslides

Appendix E1

Drainage Line Map

Appendix E2

Drainage Line Proforma Record Sheets

	\top	Т	Т						
Field Mapping by: JC and ELCF Checked by:	JH Date:	26/4/2013		Sketch Section	The state of the s	3m Charleton Contractor of the	Tayona Ta	MG T PARTING CHAPTER TO THE TOTAL TH	S. All States of the States of
Natural Terrain to the West of Wang Chau AC Bright and warm				Other Observations	Small incised channel observed. Slow water flow within the channel. For modelling purposes perhaps consider area to be open hillslope.	The channel bed was wet but no water flow was found. Occasional boulders with Max. boulder size: ~1m³	No water flow observed. Very dense vegetation limited observations. Entrainable material observed within 2m of channel width only. Max. boulder size: ~1.0m³	No water flow observed. Very dense vegetation in the incised channel and both banks limited observations.	No water flow observed. Dense vegetation limited observations. Broad open drainage channel.
				Channel Yield (m³/m)	0.20	0:30	0.75	0.80	0.75
t No.	2		100	Shape Factor	1.00	1.00	0.50	0.50	0.50
ng Kong Limited Sheet No. Study Area: Catchment No. Catchment No. Catchment No.	NTHS for Agreement No. CB20120293 Panning and Engineering Study for the Public Housing Site and Yuen Long Industrial Estate Extension at Wang Chau	Drainage Line ID: AC1		General Description (Geology)	Im exposure in channel bank. Yellow and brown, gravelly silt within the channel bank and bed. Gravel is fine to coearse sub-angular meta-siltsone. (COLLUVIUM) at channel banks.	3m exposure in channel bank. Yellow and brown, gravelly silt, Gravel is fine to coarse, sub-angular to sub-rounded meta-siltstone (COLLUVIUM) at channel banks. Angular and sub-angular cobbles and boulders (<1.0m³) located at the base of the channel.	Yellow brown, gravelly silt. Gravel is fine to coarse, sub-angular to sub-rounded metasiltstone (COLLUVIUM) at channel banks. Sub-angular cobbles and boulders (<1.0m³) on the channel sides.	Yellow brown, gravelly silt. Gravel is fine to coarse, sub-angular to sub-rounded meta-siltstone (COLLUVIUM) at channel banks. Sub-angular cobbles and boulders (<1.0m³) on the channel sides.	Yellow brown, gravelly silt. Gravel is fine to coarse, sub-angular to sub-rounded meta-siltstone (COLLUVIUM) at channel sides. Subangular cobbles, boulders (<1.0m³) and occasional outcrops within the channel sides.
Ove Arup & Partners Hong Kong Limited Calculation Sheet	93 the Public Housing Site ar	AC	n Summary	Typical thickness of loose deposits (m)	0.1	0.1	0.1	0.1	0.1
Ove /	NTHS for Agreement No. CB20120293 Pianning and Engineering Study for the	Catchment	Channel Cross Section Summary	Bank Angle	NW: 80° SE: 80°	NW: 80* SE: 80*	NW: 40° SE: 45°	NW: 35° SE: 40°	N: 30° S: 35°
	greement N Id Engineeri	ine within	Channel	Depth (m)	-	8	9	9	c)
	NTHS for A Planning an	r Drainage		Width (m)	2	3	15	16	15
	litle:	ng Records fo		Length of Inclination of Section (m) Channel Bed Width (m)	5.	10*	20°	30°	40.
	Job Title:	Drainage Line Mapping Records for Drainage Line within Catchment AC		Length of Section (m)	21	15	54	102	61
RUP	226464	Drainag		Channel	*80	.62*	40°	40.	92*
AF	Job No.			Channel	-	2	ю	4	S

-

Capacity of the Capacity of th VEGETATION COBBLE/BOMDEN W. 2 VEGETATION ALL WEGETRITON A W 2 200 T? T'T BEDROLL 180:00 12.57 Sketch Section Ibm . S THE SUITING COESLE /BORLDER 0 Field Mapping by: JC and ELCF Checked by: JH Date: 8 26 3 26/4/2013 35 9 No water flow observed. Dense vegetation is within the channel and on the banks. Eroad Small incised channel observed. Slow water flow within the channel. For modelling purposes perhaps consider area to be open vegetation limited observations. Entrainable The channel bed was wet but no water flow was found. Occasional boulders with Max. No water flow observed. Dense vegetation limited observation. No water flow observed. Dense vegetation No water flow observed. Dense vegetation limited observation. material observed within 2m of channel No water flow observed. Very dense Natural Terrain to the West of Wang Chau Other Observations Max. boulder size: ~1.0m³ Max. boulder size: ~1m³. Max. boulder size: ~1m³. Max. boulder size: ~1m³. Max. boulder size: ~1m³. channel - not incised limited observation. boulder size: ~1m3 width only. A_C Estimated Channel Yield (m³/m) 0.75 0.20 0.30 0.75 0.75 0.60 0.75 Channel Shape Factor 1.00 1.00 0.50 0.50 0.50 0.50 0.50 Catchment No. Weather: NTHS for Agreement No. CB20120293 Pranning and Engineering Study for the Public Housing Site and Yuen Long Industrial Estate Extension at Wang Chau Study Area: siltstone (COLLUVIUM) at channel sides. Sub-(COLLUVIUM) at channel banks. Angular and angular cobbles and boulders (<1.0m³) at the base of the channel. boulders (<1.0m³) and cobbles located at the coarse, sub-angular to sub-rounded meta-siltstone (COLLUVIUM) at channel banks at channel banks. Meta-sedimentary bedrock to coarse, sub-angular to sub-rounded meta-siltstone (COLLUVIUM) at channel banks. Yellow and brown, gravelly silt. Gravel is fine to coarse, sub-angular to sub-rounded metato coarse, sub-angular to sub-rounded meta-siltstone (COLLUVIUM) at channel banks. to coarse, sub-angular to sub-rounded metabrown, gravelly silt. Gravel is fine to coearse sub-angular meta-siltsone (COLLUVIUM) at channel banks. Sub-angular cobbles and boulders (<1.0m³) brown, gravelly silt, Gravel is fine to coarse, sub-angular cobbles and boulders (<1.0m³) located at the base of the channel. Yellow brown, gravelly silt. Gravel is fine to 3m exposure in channel banks: Yellow and sub-angular to sub-rounded meta-siltstone 1m exposure in channel bank. Yellow and siltstone (COLLUVIUM) at channel banks. AC2 Occasional rock outcrops was identified. was exposed in the base of the incised channel. Angular and sub-anuglar cobbles and General Description (Geology) Drainage Line ID: on the channel sides. base of the channel. Ove Arup & Partners Hong Kong Limited Calculation Sheet Typical thickness of loose deposits 0.15 0.05 0.10 0.10 0.1 0.1 0.1 Channel Cross Section Summary Drainage Line Mapping Records for Drainage Line within Catchment AC Bank Angle NW: 80° SE: 80° NW: 40° SE: 45° 30° 30° 32° 30° .08 80. NW: NW: SE: NW: SE: Depth 9 2 Width 15 9 9 9 2 က œ Inclination of Channel Bed 10. 20° 20 35 30 30 ŝ Job Title: Length of Section 15 38 33 44 21 54 3 Channel Orientation 0 108 45 45 90 . 8 . 65 Job No. Channel Section 7 က 4 2 9

_

3.0m Dense Dense Dense Vegetation 5.0M Dense Vegetation 4.0m JO. 00/ 350 1.00 Sketch Section messed 15.0M 15.0m chance 30.0M Cobbles Cabbles + Boulders Field Mapping by: JC and ELCF Checked by: JH Date: 26/4/2013 limited observations. Entrainable material ~3m of Very small amount of water flow at the channel bed. Very dense vegetation limited observations. No water flow observed. Very dense vegetation limited observations. Entrainable material within No water flow observed. Very dense vegetation No water flow observed. Very dense vegetation flow. For modelling purposes perhaps consider No access to channel. Small incised channel was observed from a distance, considered to have only a minor capability to channel debris observed within ~2m of channel width only limited observations. Entrainable material Other Observations Natural Terrain to the West of Wang Chau AD -3m of channel width only. Max. boulder size: ∼1.0m³ Max. boulder size: ~1.0m³ Max. boulder size: ~1.0m³ area to be open hillslope. channel width only. Bright and warm Estimated Channel Yield (m³/m) 0.15 0.30 0.20 0.60 0.45 Channel Shape Factor 0.50 0.75 0.67 0.50 0.50 Study Area: Catchment No. Job Title: NTHS for Agreement No. C820120293
Planning and Engineering Study for the Public Housing Site and Yuen Long Industrial Estate Extension at Wang Chau Drainage Line Mapping Records for Drainage Line within Catchment AD AD1

AD1

AD1 coarse, sub-angular to sub-rounded meta-siltstone (COLLUVIUM) at channel banks. Sub-Weather: angular cobbles and boulders (<1.0m³) located at the base of the channel. Boulders (<1.0m3) and cobbles located on the Boulders (<1.0m³) and cobbles located at the 0.5m exposure in channel banks. Yellow brown, gravelly silt. Gravel is fine to coarse, sub-angular to sub-rounded meta-siltstone rellow brown, gravelly silt. Gravel is fine to No access to channel section 1. Geology is assumed to be consistent with surrounding rellow brown, gravelly silt. Gravel is fine to rellow brown, gravelly silt. Gravel is fine to coarse, sub-angular to sub-rounded meta-siltstone (COLLUVIUM) at channel banks. coarse, sub-angular to sub-rounded meta-siltstone (COLLUVIUM) at channel sides. area - Gravelly silt, with gravel of meta-General Description (Geology) siltstone and occasional cobbles (COLLUVIUM). COLLUVIUM) at channel banks. Sheet No. base of the channel. channel sides. Ove Arup & Partners Hong Kong Limited Calculation Sheet Typical thickness of loose deposits (m) 0.2 0.2 0.1 0.1 0.1 Channel Cross Section Summary Bank Angle N: 10° S: 10° 30° E: 35° W: 35° E: 30° W: 30° 10° SW: żΰ Depth (m) <1.0 - 2 က Width (m) ~1.5 15 15 က 20 Inclination of Channel Bed 10° 9 25° 30° 20 Length of Section (m) 45 4 24 20 49 Channel 226464 9 9 82 .09 .06 Channel Section Job No. ς-7 က 4 2

-

Appendix F1

Boulder Inspection Record Sheet

Agreement No. CB20120293
Planning and Engineering Study for the Public Housing Site and Yuen Long Industrial Estate Extension at Wang Chau

BOULDER SURVEY

SECTION 1: Survey Reference Data			
Location:	Catchment AD		
Boulder Field Ref:	AD-B1		
Coordinates:	E 819847		N 835712
Date: Inspecting Personnel:	13th May 2013	Weather:	Clear, humid

SECTION 2: Basic Boulder	· Data
<u>Lithology:</u>	
Rock type: Meta-Sedimentary Grade: III Dimensions (m):	lsolated Boulder Boulder Cluster Rock Outcrop
Length: 2 Breadth: 1.5 (measured normal to contour) (measured along contour)	Height: 1 (∴ Volume: 3 m³)
Shape: (tick one) Comment:	
Sub-rounded (e.g. O) Sub-angular Angular (e.g. D) Slender - upright (e.g. O) Slender - reposed (e.g. C) (Slender - longest dimension > 2 x shortest dimension; upright - longest dimension is the filter to the short of the s	
Soil ✓ Condition: Rock Condition: Boulder in good contact with the gro	und
	General surrounding area: 30
If the angle below boulder > 50° (i.e. the boulder rests on a ledge), enter	the neight of leage (m):
Travel Path: Viable travel path intercepts facility: (See Appendix F2) Travel path vegetation type and density: Dense brush with trees a	Yes V

SECTION 3: Photo of the Boulders

Photo 1: Angular boulder is in good contact of soil and stacking on top of another boulder.

Agreement No. CB20120293
Planning and Engineering Study for the Public Housing Site and Yuen Long Industrial Estate Extension at Wang Chau

BOULDER SURVEY

SECTION 1: Survey Reference Data			
Location:	Catchment AC		
Boulder Field Ref:	AC-B1		
Coordinates:	E 819804		N 835598
Date:	13th May 2013	Weather:	Clear, humid
Inspecting Personnel:			

	SECTION 2: Basic Bould	or Data
_	SECTION 2: Basic Bould	er Data
<u>Lithology:</u>		(tick one)
Rock type: Meta-Sedimentary	Grade: III	Isolated Boulder
<u>Dimensions (m):</u>		Boulder Cluster Rock Outcrop ✓
Length: 1.25	Breadth: 1.5	Height: 1
(measured normal to contour)	(measured along contour)	
		(∴ Volume: 2.5 m ³)
Shape:		
	(tick one) Comment:	
Sub-rounded (e.g. O	Sub-angula	ar boulders
Angular (e.g. □		
Slender - upright (e.g. 0)	
Slender - reposed (e.g. =		
(Slender - longest dimension > 2 x shortes	st dimension; upright - longest dimension is th	e height; reposed - not upright)
<u>Foundation:</u>		
(tick one)	Condition:	
Soil ✓	Boulder in good contact with the g	ground
Rock		
Slope Angle (°):		
Above boulder:	Below boulder:	35 General surrounding area: 30
If the angle below boulder > 50° (i	.e. the boulder rests on a ledge), ente	er the height of ledge (m):
<u>Travel Path:</u>		
Viable travel path intercepts facilit (See Appendix F2)	y:	Yes ✓ No
Travel path vegetation type and d	ensity: Dense brush with tree	s at foot slopes

SECTION 3: Photo of the Boulders

Photo 1: Sub-angular boulder cluster was observed at hilltop.

SECTION 1: Survey Reference Data			
Location:	Catchment AC		
Boulder Field Ref:	AC-B2		
Coordinates:	E 819839		N 835529
Date: Inspecting Personnel:	13th May 2013	Weather:	Clear, humid

S	ECTION 2: Basic Boulde	er Data
<u>Lithology:</u>		
Rock type: Meta-Sedimentary Dimensions (m):	Grade: III	Solated Boulder Soulder Soulder Sock Outcrop Stoke Sock Outcrop So
Length: 1.5 (measured normal to contour)	Breadth: 1.5 (measured along contour)	Height: 0.9 (∴ Volume: 2 m³)
Shape:	(tick one) Comment:	
Sub-rounded (e.g. O) Angular (e.g. D) Slender - upright (e.g. D) Slender - reposed (e.g. C) (Slender - longest dimension > 2 x shortest	Sub-angular Sub-angular	
Foundation: (tick one) Soil Rock	Condition: Boulder in good contact with the gr	round
Slope Angle (°):		
Above boulder: 4	Below boulder: 4	General surrounding area:35
If the angle below boulder > 50° (i.e.	e. the boulder rests on a ledge), enter	r the height of ledge (m):
<u>Travel Path:</u>		(tick one)
Viable travel path intercepts facility (See Appendix F2)	r.	Yes ✓ No
Travel path vegetation type and de	ensity: Dense brush with trees	at foot slopes

SECTION 3: Photo of the Boulders

Photo 1: Sub-angular boulder cluster on ridgeline was observed.

Agreement No. CB20120293
Planning and Engineering Study for the Public Housing Site and Yuen Long Industrial Estate Extension at Wang Chau

BOULDER SURVEY

SECTION 1: Survey Reference Data			
Location:	Catchment X		
Boulder Field Ref:	X-B1		
Coordinates:	E 819931		N 835407
Date:	13th May 2013	Weather:	Clear, humid
Inspecting Personnel:			

SI	ECTION 2: Basic Boulde	r Data
<u>Lithology:</u>		
Rock type: Meta-Sedimentary Dimensions (m):	Grade: III	Isolated Boulder Boulder Cluster Rock Outcrop
Length: 1.5 (measured normal to contour)	Breadth:1.5 (measured along contour)	Height: 0.9 (∴ Volume: 2 m³)
<u>Shape:</u>	(tick one) Comment:	· · · · · · · · · · · · · · · · · · ·
Sub-rounded (e.g. O)	Sub-angular	r boulders
Angular (e.g. □)		
Slender - upright (e.g. 0)		
Slender - reposed (e.g. —) (Slender - longest dimension > 2 x shortest	dimension; upright - longest dimension is the	height; reposed - not upright)
Foundation: (tick one) Soil Rock	Condition: Boulder in good contact with the green	ound
Slope Angle (°):		
Above boulder: 30	0 Below boulder: 4	0 General surrounding area:30
If the angle below boulder > 50° (i.e	e. the boulder rests on a ledge), enter	r the height of ledge (m):
Travel Path:		
Viable travel path intercepts facility (See Appendix F2)	:	Yes ✓ No
Travel path vegetation type and de	nsity: Dense brush with trees	at foot slopes

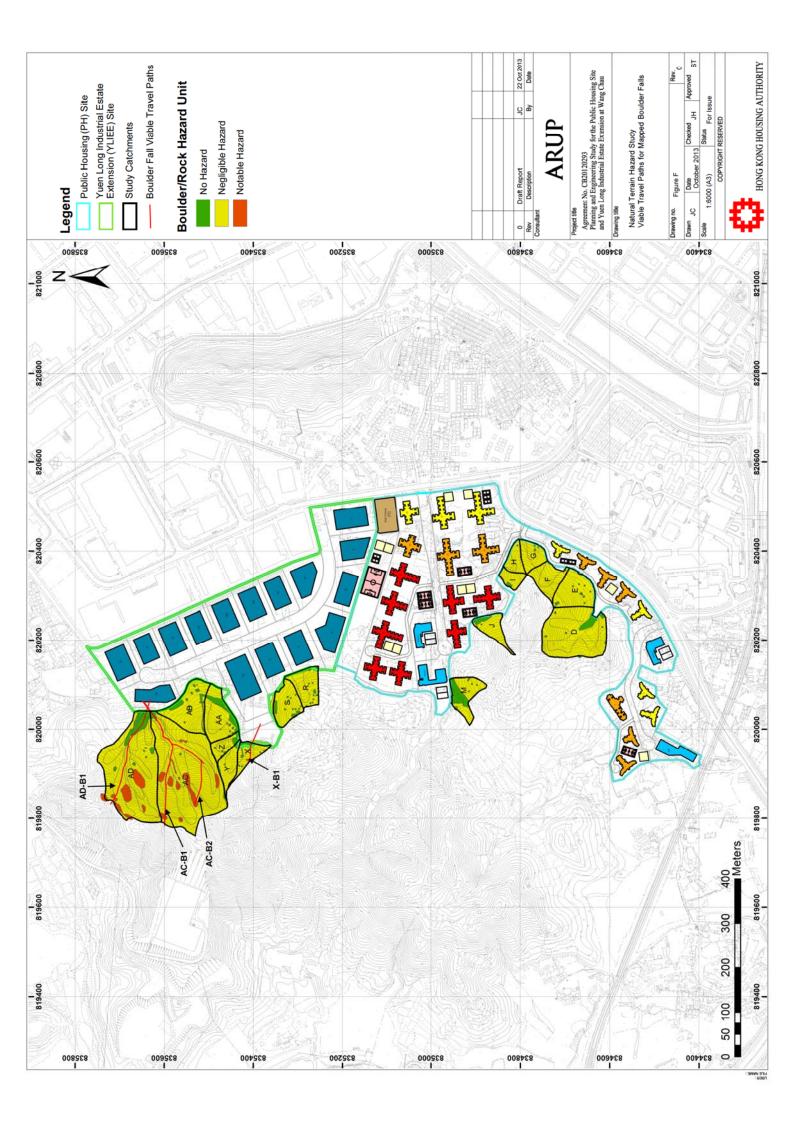

SECTION 3: Photo of the Boulders

Photo 1: Sub-angular boulder cluster was observed.

Appendix F2

Viable Travel Paths for Mapped Boulders

Appendix G

Landslide Debris Mobility Modelling

A 1	7 1	ID
ΑI	Κl	J٢

Ove Arup & Partners Hong Kong Ltd.

CALCULATION SHEET -DAN-W DEBRIS FLOW ANALYSIS

JOB TITLE	Agreement No. CB20120293 Planning and Engineering Study for the Public Housing Site and Yuen Long Industrial Estate Extension at Wang Chau					
JOB NUMBER	226464					
REPORT TITLE	Debris Flow Analysis for Wang Chau	<u>Initial</u>				
MADE BY						
CHECKED BY						
APPROVED BY						
DATE	Jun-13	1				

CONTENTS OF SPREADSHEET

Section	Description	Sheet No.
1.0	INTRODUCTION	1
2.0	METHOD OF ANALYSES	1
2.1	DAN-W Software	1
2.2	Assumptions DAN-W Software	1
2.3	Back Analysis vs. Predictive Approach	1
3.0	DEBRIS MOBILITY ANALYSIS	2
3.1	Summary of Analysis Input Parameters and Results	2
3.2	Details of Analysis Results by Failure ID	5

REVISIONS:	Current Revision:	0

Rev.	Date	Made by	Check	Description	

ARUP Sheet No.: 1		JOB TIT		Agreement No. CB20120293 Planning and Engineering Study for the Public Housing Site and Yuen Long Industrial Estate Extension at Wang Chau					
		JOB NUMBER:		226464 SHEET DESCRIPTION:		Analysis Introduction and Description			
Date:	Jun-13	Drawn:	JC	Checked:	JH	Approved:	SM	Revision:	0

1.0 INTRODUCTION

The mobility of potential landslides within the study area has been assessed based on the hazard models generated and the predicted Worst Credible Events/Conservative Events for each catchment.

2.0 METHOD OF ANALYSES

2.1 DAN-W Software

The analysis has been carried out using the computer programme DAN/W developed by O. Hungr Geotechnical Research Inc. This is a windows based programe used to model post failure motion of rapid landslides. It implements a Lagrangian solution of the equations of motion for a mass of earth material which starts from a prescribed static configuration and flows according to one of several rheological relationships.

The critical sections for analysis were identified based on the location of probable landslide source areas, as determined by the hazard model, and a GIS assessment of potential debris flow trajectory. Debris flow widths were assessed based on engineering judgement of the probable channelisation potential along the debris flow path.

No termination criteria was applied to the model and it was allowed to run until the debris had ceased to move as a result of its own properites.

2.2 Assumptions for DAN-W Software

- The material unit weight has been assumed to be 20 kN/cu.m for all analysis
- The material internal friction angle has been assumed to be 35 degrees for all analysis
- The pore pressure coefficient (Ru) has been set as zero for all analysis
- For a frictional rheology analysis, the only variable is the Friction Angle
- For a Voellmy rheological analysis, both the Friction Coefficient (dimensionless) and Turbulence Coefficient (m/s2) are variable parameters
- A cross-sectional shape factor of 0.67 has been appied to represent flow along a non-circular channel
- Erosion depths have been specified based on field observations of potentially entrainable material. These may have been averaged over a specified channel length so as to represent field conditions
- Cross-sectional profiles have been generated based on the 1:1,000 scale digital maps obtained from Lands Survey Office.

2.3 Back Analysis vs. Predictive Approach

Where possible, a back analysis method should be utilized based on previously observed landslide dimesions and volumes identified in the desk study investigation. Otherwise, a predictive approach should be taken based on engineering judgment as described in Section 2.1. Due to the lack of recent landslides observed within or in the proximity of the Study Area, a predictive approach will be adopted in this report.

2.4 Material Properties

The rheology is defined by the landslide or hazard type. An Open Hillside Landside (OHL) has been modelled using a 'Frictional' rheology whereas a Channelized Debris Flow (CDF) has been modelled using a 'Voellmy' rheology.

The parameters specified in the Material Properties table are defined by the rheological model used. Friction Angle only applies to Frictional models. Friction Coefficient, Turbulence Coefficient and Erosion Depth only applies to Voellmy models.

ARI	ARUP				B20120293 gineering Study f	or the Public Hou	sing Site and Yu	en Long Industrial Estate	e Extension at
Sheet No.: 2		JOB NUM	IBER:	226464	SHEET DES	SCRIPTION:		Analysis Summary	
Date:	Jun-13	Drawn:	JC	Checked:	JH	Approved:	SM	Revision:	0

3.0 DEBRIS MOBILITY ANALYSIS

3.1 Summary of Analysis Input Parameters and Results

	Catchment ID	AD	AD	AC	AC	AB	AA	S
Hazard	Section ID	SSAD1	SSAD2	SSAC1	SSAC2	SSAB1	SSAA1	SSS1
Type/ID	Failure ID	F-AD1	F-AD2	F-AC1	F-AC2	F-AB1	F-AA1	F-S1
Турскі	Hazard Type	OHL > CDF	OHL	CDF	CDF	OHL	OHL	OHL
Source	Slope Length (m)*	10	10	10	10	10	10	10
Area	Slope Width (m)*	10	10	10	10	10	10	10
Geometry	Failure Depth (m)*	2	2	1	2	2	2	1
0	Estimated Source Volume (m³)*	100.00	100.00	50.00	100.00	100.00	50.00	50.00
Volum	Computed Source Volume (m³)	101.61	100.18	59.14	102.43	99.28	49.59	49.49
Failure Volume	Computed Entrainment Vol. (m³)	109.63	0.00	151.74	153.58	0.00	0.00	0.00
	Total Debris Volume (m³)	211.24	100.18	210.88	256.01	99.28	49.59	49.49
istics	Total Debris Volume at OP (m³)	•	-	-	-	-	-	0.07
ıracter	Maximum Debris Thickness at OP (m)	1	-	-	-	-	-	0.01
Run-out characteristics	Maximum Debris Velocity (m/s)	15.26	4.57	7.62	9.01	2.40	4.80	4.56
Run-	Maximum Debris Velocity at OP (m/s)	ı	-	-	-	-	-	2.25

^{*}See below for landslide dimensions and calculations

CALCULATIONS

Total Volume = Source Volume + Entrainment Volume

Landslide Source Volume = $\frac{1}{6}\pi(L \times W \times D)$

L - W - D -	Length Width Depth	
		W D

Hazard Type

OHL - Open Hillside Landslide CDF - Channelized Debris Flow

Run-out Characteristics

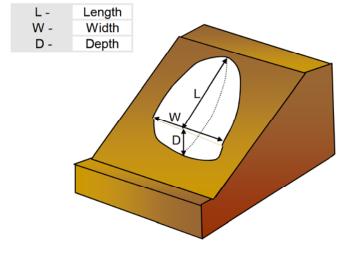
OP - Observation Point

ADDITIONAL COMMENTS:

NOTE: See Figure F1 for Study Area, NT Catchment locations, section lines and source area locations

ARI	ARUP		JOB TITLE:		Agreement No. CB20120293 Planning and Engineering Study for the Public Housing Site and Yuen Long Industrial Estate Extension Wang Chau				
Sheet No.: 3		JOB NUM	IBER:	226464	SHEET DES	SCRIPTION:		Analysis Summary	,
Date:	Jun-13	Drawn:	JC	Checked:	JH	Approved:	SM	Revision:	0

3.1 cont. Summary of Analysis Input Parameters and Results


	Catchment ID	R	M	J	I	Н	G	F
Hazard	Section ID	SSR1	SSM1	SSJ1	SSI1	SSH1	SSG1	SSF1
Type/ID	Failure ID	F-R1	F-M1	F-J1	F-I1	F-H1	F-G1	F-F1
	Hazard Type	OHL	OHL	OHL	OHL	OHL	OHL	OHL
	Slope Length (m)*	10	10	10	10	10	10	10
Source Area Geometry	Slope Width (m)*	10	10	10	10	10	10	10
	Failure Depth (m)*	2	2	2	2	2	2	2
ø	Estimated Source Volume (m³)	50.00	50.00	50.00	50.00	50.00	100.00	100.00
Volum	Computed Source Volume (m³)	48.38	48.22	49.85	49.76	49.70	99.33	101.00
Failure Volume	Computed Entrainment Vol. (m³)	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Total Debris Volume (m³)	48.38	48.22	49.85	49.76	49.70	99.33	101.00
istics	Total Debris Volume at OP (m³)	-	-	-	-	5.99	-	-
aracter	Maximum Debris Thickness at OP (m)	-	-	-	-	0.02	-	-
Run-out characteristics	Maximum Debris Velocity (m/s)	2.16	0.78	0.78	2.86	8.08	4.96	4.02
Run-e	Maximum Debris Velocity at OP (m/s)	-	-	-	-	3.50	-	-

^{*}See below for landslide dimensions and calculations

CALCULATIONS

Total Volume = Source Volume + Entrainment Volume

 $Landslide \ Source \ Volume = \frac{1}{6}\pi(L\times W\times D)$

Hazard Type

OHL - Open Hillside Landslide

CDF - Channelized Debris Flow

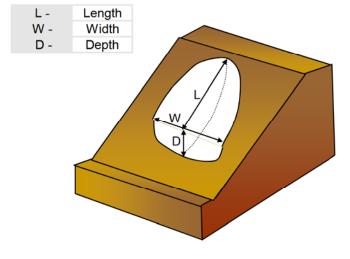
Run-out Characteristics

OP - Observation Point

See Figure F1 for Study Area, NT Catchment locations, section lines and source area locations

ARI	ARUP		JOB TITLE:		Agreement No. CB20120293 Planning and Engineering Study for the Public Housing Site and Yuen Long Industrial Estate Extension at Wang Chau				
Sheet No.: 4		JOB NUM	IBER:	226464	SHEET DES	SCRIPTION:		Analysis Summary	7
Date:	41426	Drawn:	JC	Checked:	ЛН	Approved:	SM	Revision:	0

3.1 cont. Summary of Analysis Input Parameters and Results


	Catchment ID	Е	D	D		
Hazard	Section ID	SSE1	SSD1	SSD2		
Type/ID	Failure ID	F-E1	F-D1	F-D2		
	Hazard Type	OHL	OHL	OHL		
	Slope Length (m)*	10	10	10		
Source Area Geometry	Slope Width (m)*	10	10	10		
Coomony	Failure Depth (m)*	1	2	2		
Ф	Estimated Source Volume (m³)	50.00	100.00	50.00		
Volum	Computed Source Volume (m³)	53.60	100.86	50.27		
Failure Volume	Computed Entrainment Vol. (m³)	0.00	0.00	0.00		
<u> </u>	Total Debris Volume (m³)	0.00	0.00	0.00		
istics	Total Debris Volume at OP (m³)	-	-	-		
aracter	Maximum Debris Thickness at OP (m)	1	1	-		
Run-out characteristics	Maximum Debris Velocity (m/s)	1.48	5.55	4.18		
Run-	Maximum Debris Velocity at OP (m/s)	ı	-	-		

^{*}See below for landslide dimensions and calculations

CALCULATIONS

Total Volume = Source Volume + Entrainment Volume

Landslide Source Volume = $\frac{1}{6}\pi(L \times W \times D)$

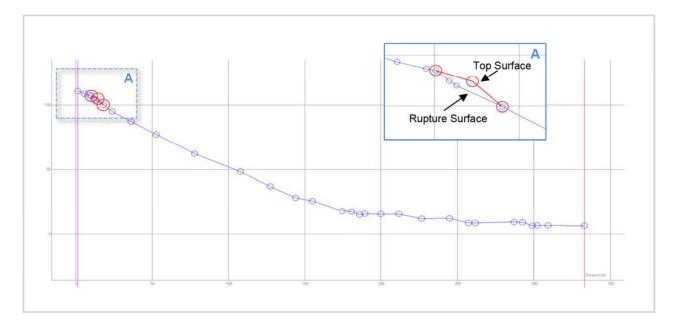
Hazard Type

OHL - Open Hillside Landslide

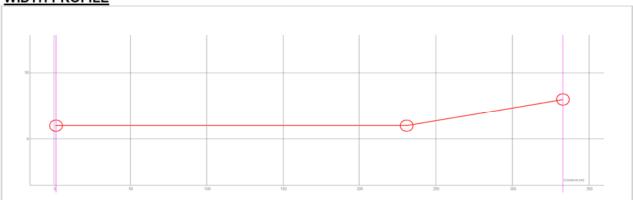
CDF - Channelized Debris Flow

Run-out Characteristics

OP - Observation Point


See Figure X for Study Area, NT Catchment locations, section lines and source area locations

ARI	JP	JOB TITLE:		_	Agreement No. CB20120293 Planning and Engineering Study for the Public Housing Site and Yuen Long Industrial Estate Extension at Wang Chau					
Sheet No.: 5		JOB NUN	MBER:	227725	SHEET DES	SCRIPTION:		Input Parameters		
Date:	Jun-13	Drawn:	Drawn: JC		JH	Approved:	SM	Revision:	0	


Failure ID F-AD1 Estimated Source Volume $100.00 \, \text{m}^3$ Hazard Type OHL > CDF Estimated Entrainment Volume $0 \, \text{m}^3$

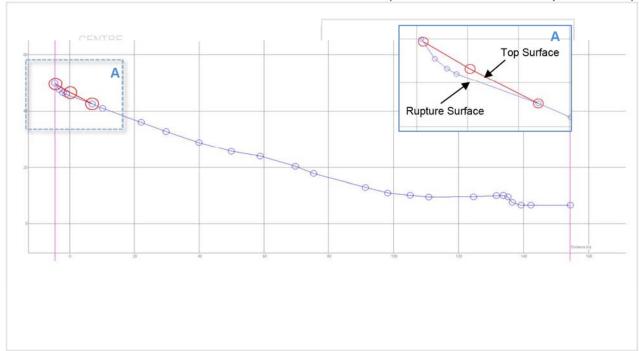
SECTIONAL PROFILE

(INSET - Detailed view of rupture surface)

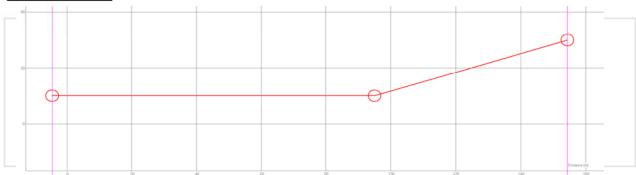
WIDTH PROFILE

MATERIAL PROPERTIES

Rheology	Unit Weight (IN)(203) Friction Angle (°		Pore Pressure	Friction Coefficient	Turbulence Coefficient	Internal Angle of	Erosion Depth (m)	
	(kN/m^3)	Angle ()	Coefficient	Coemolent	Coemolent	Friction (°)	Min	Max
Frictional	20	25	-	-	-	35	0	0
Voellmy	20	-	-	0.19	500	-	0.1	0.2


ARUP	JOB TITLE:	Agreement No. Planning and En Wang Chau		ly for the Public Hou	sing Site and Y	uen Long Industrial Estat	e Extension at
Sheet No.: 6	JOB NUMBER:	227725	SHEET D	ESCRIPTION:		Output Results	
Date: Jun-13	Drawn: JC	Checked:	JH	Approved:	SM	Revision:	0
Failure ID Hazard Type FAILURE PROFI	F-AD1 OHL > CDF		Compute	ed Source Vo		101.61 m³ 109.63 m³	
150	Pre-fi	ailure Profile					
VELOCITY PRO	50 100 FILE	110			10	320	750
THICKNESS PRO	OFILE.	25 196	15 300	25 5	26	yta Cotave (si. 200	266
	JT CHARACTERISTICS	135 140	100	Site Boundary ADDITION			70
Total Debris Volu Total Debris Volu Maximum Debris Maximum Debris Maximum Debris	me at OP Thickness at OP Velocity	211.24 - - 15.26	m ³ m m m/s m/s				

ARI	JP	JOB TITLE:		Agreement No. CB20120293 Planning and Engineering Study for the Public Housing Site and Yuen Long Industrial Estate Extension at Wang Chau					
Sheet No.:	Sheet No.: 7 JOB NUMBER:		226464	226464 SHEET DESCRIPTION: Input Parameters					
Date:	Jun-13	Drawn:	Л	Checked:	JH	Approved:	SM	Revision:	0


Failure ID	F-AD2	Estimated Source Volume	100.00	m³
Hazard Type	OHL	Estimated Entrainment Volume	0	m³

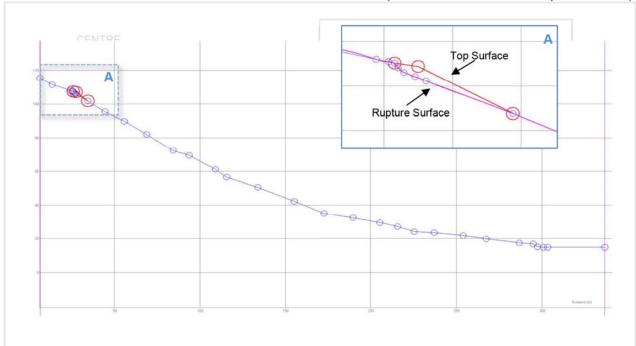
SECTIONAL PROFILE

(INSET - Detailed view of rupture surface)

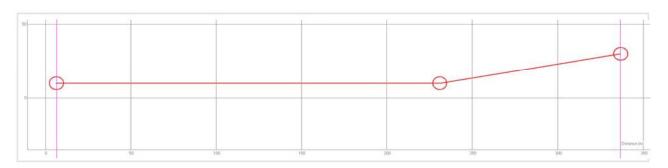
WIDTH PROFILE

MATERIAL PROPERTIES

Rheology	Unit Weight	Friction	Pore Pressure	Friction	Turbulence	Internal Angle of	Erosion [Depth (m)
0,	(kN/m³)	Angle (°)	Coefficient	Coefficient	Coefficient	Friction (°)	Min	Max
Frictional	20	25	-	-	-	35	0	0


AR	UP	JOB TITL	.E:	Agreement No. 6 Planning and En Wang Chau		or the Public Hou	using Site and Y	uen Long Industrial Esta	nte Extension at
Sheet No.:	8	JOB NUME	BER:	226464	SHEET DES	SCRIPTION:		Output Results	
Date:	Jun-13	Drawn:	Л	Checked:	JH	Approved:	SM	Revision:	0
Failure II Hazard T		F-AD2 OHL				/OLUME Source Vo		100.18 m ³	
W	×	Pre-failure Profile							
VELOCIT	TY PROFILE		60	60	00	(I	NSET - O	bservation Poir	nt data)
THICKN	ESS PROFIL	_E	40 50	60 70	60 50	100 110	NSET - O	bservation Poir	nt data)
.5		39 39	46 10	GO 73	62 60	100 110	1,0 136	No Distance Disservation Point)	
DEBRIS	RUN-OUT C	HARACTERI	STICS			ADDITION			
Total Deb Maximun Maximun	oris Volume oris Volume n Debris Thio n Debris Velo n Debris Velo	ckness at OP ocity		100.18 - - - 4.57 -	m ³ m m m/s				

ARI	JP	JOB TIT	TLE:	Agreement No. O Planning and Eng Wang Chau		or the Public Hou	sing Site and Yu	en Long Industrial Estate	e Extension at
Sheet No.:	9	JOB NUM	IBER:	226464	SHEET DES	SCRIPTION:		Input Parameters	
Date:	Jun-13	Drawn:	JC	Checked:	JH	Approved:	SM	Revision:	0


Failure ID	F-AC1	Estimated Source Volume	50.00	m ³
Hazard Type	CDF	Estimated Entrainment Volume	0	m³

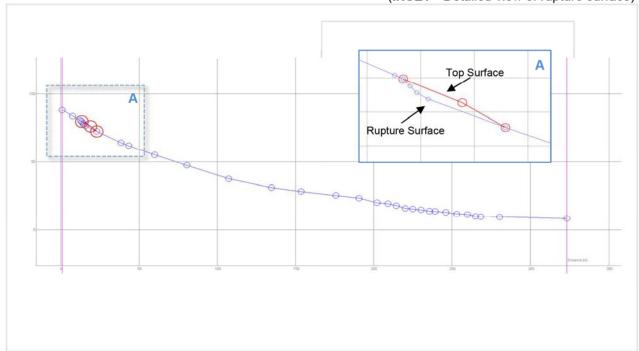
SECTIONAL PROFILE

(INSET - Detailed view of rupture surface)

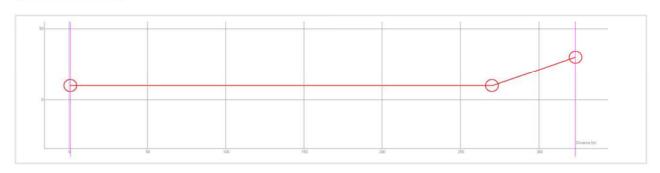
WIDTH PROFILE

MATERIAL PROPERTIES

Rheology	Unit Weight	Friction Angle (°)	Pore Pressure Coefficient	Friction Coefficient	Turbulence Coefficient	Internal Angle of		Depth (m)
	(kN/m^3)	. ,	Coemcient			Friction (°)	Min	Max
Frictional	20	25	-	-	-	35	0	0
Voellmy	20	-	-	0.19	500	-	0.1	0.1

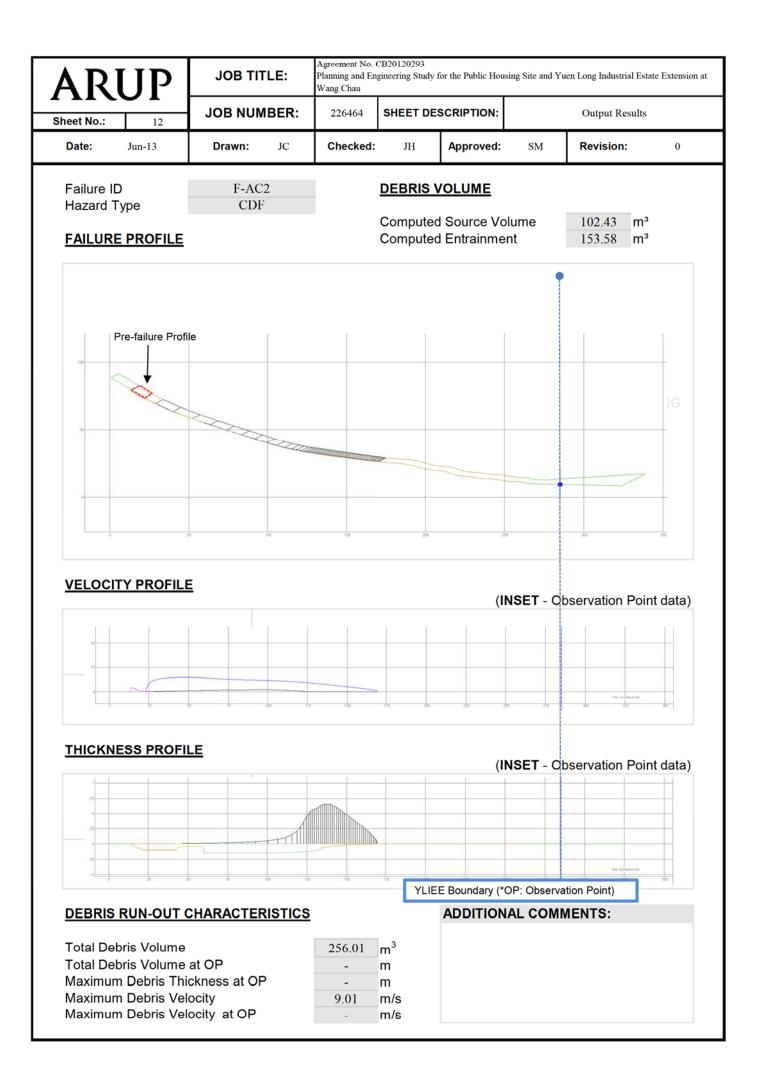

ARUP	JOB TITLE:	Agreement No. Planning and Er Wang Chau		y for the Public Hou	sing Site and Y	uen Long Industrial Esta	te Extension at
Sheet No.: 10	JOB NUMBER:	226464	SHEET D	ESCRIPTION:		Output Results	
Date: Jun-13	Drawn: JC	Checked:	JH	Approved:	SM	Revision:	0
Failure ID Hazard Type <u>FAILURE PROFII</u>	F-AC1 CDF		Compute	VOLUME ed Source Vo		59.14 m³ 151.74 m³	
100	Pre-failure Profile						
0	50 100	150	200	250		300 360	—√IG
VELOCITY PROF	ILE 50 75 100 125	150 17	5 200	225 250	275	Hor. Distance (300 325 33	na)
THICKNESS PRO	DFILE 50 75 100 125	150 17	5 280	YLIEE Bounda	ary (*OP: Ob	Hot Distance servation Point)	n)
Total Debris Volur Total Debris Volur Maximum Debris Maximum Debris Maximum Debris	ne at OP Thickness at OP √elocity	210.88 - - 7.62 -	m ³ m m m/s	ADDITION			

ARI	JP	JOB TIT	ΓLE:	Agreement No. 0 Planning and En Wang Chau		or the Public Hou	sing Site and Yu	en Long Industrial Estate	Extension at	
Sheet No.:	11	JOB NUM	IBER:	226464	SHEET DES	SCRIPTION:		Input Parameters		
Date:	Jun-13	Drawn:	JC	Checked:	JH	Approved:	SM	Revision:	0	


Failure ID	F-AC2	Estimated Source Volume	100.00	m³
Hazard Type	CDF	Estimated Entrainment Volume	0	m³

SECTIONAL PROFILE

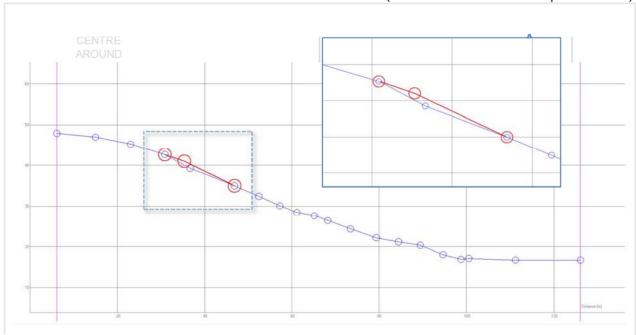
(INSET - Detailed view of rupture surface)



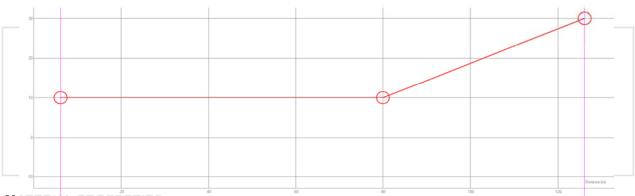
WIDTH PROFILE

MATERIAL PROPERTIES

Rheology	Unit Weight	Friction	Pore Pressure	Friction Coefficient	Turbulence Coefficient	Internal Angle of	Erosion [Depth (m)
	(kN/m^3)	Angle (°)	Coefficient	Coemolent	Coemolent	Friction (°)	Min	Max
Frictional	20	25	-	-	-	35	0	0
Voellmy	20	-	-	0.19	500	-	0.05	0.15

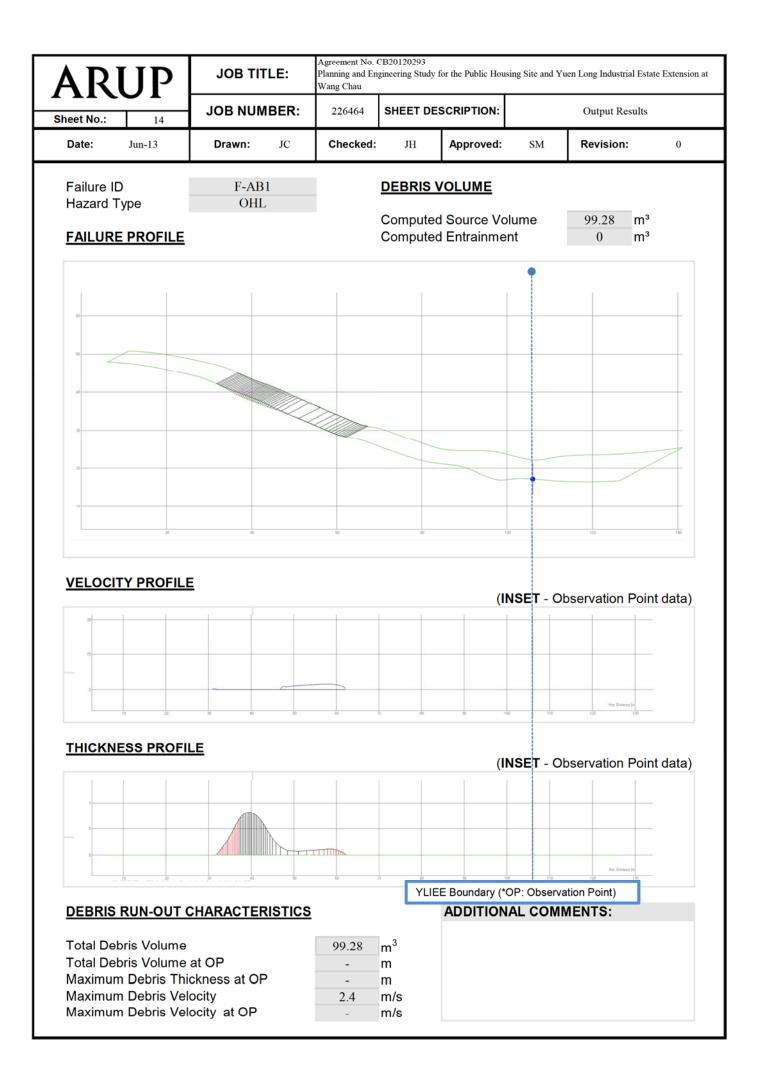


ARI	JP	JOB TIT	TLE:	Agreement No. O Planning and Eng Wang Chau		or the Public Hou	sing Site and Yu	en Long Industrial Estat	e Extension at
Sheet No.:	13	JOB NUM	IBER:	226464	SHEET DES	SCRIPTION:		Input Parameters	
Date:	Jun-13	Drawn:	JC	Checked:	JH	Approved:	SM	Revision:	0


Failure ID	F-AB1	Estimated Source Volume	100.00	m³
Hazard Type	OHL	Estimated Entrainment Volume	0	m³

SECTIONAL PROFILE

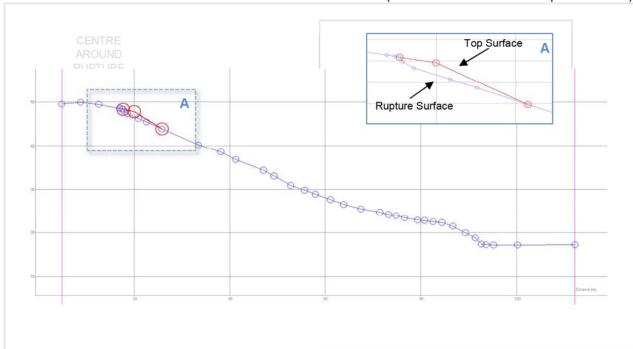
(INSET - Detailed view of rupture surface)



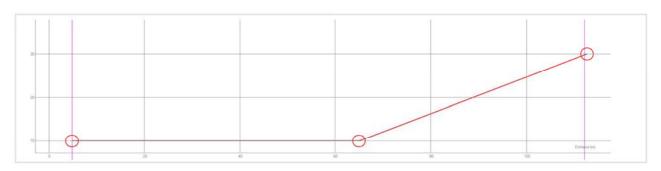
WIDTH PROFILE

MATERIAL PROPERTIES

(KN/m³) Coefficient Friction () Min Mi	Rheology	Unit Weight	Friction Angle (°)	Pore Pressure Coefficient	Friction Coefficient	Turbulence Coefficient	Internal Angle of Friction (°)		Depth (m)
Voellmy 20 25 35 0	Voellmy	20	25		-	-	35	0	Max 0

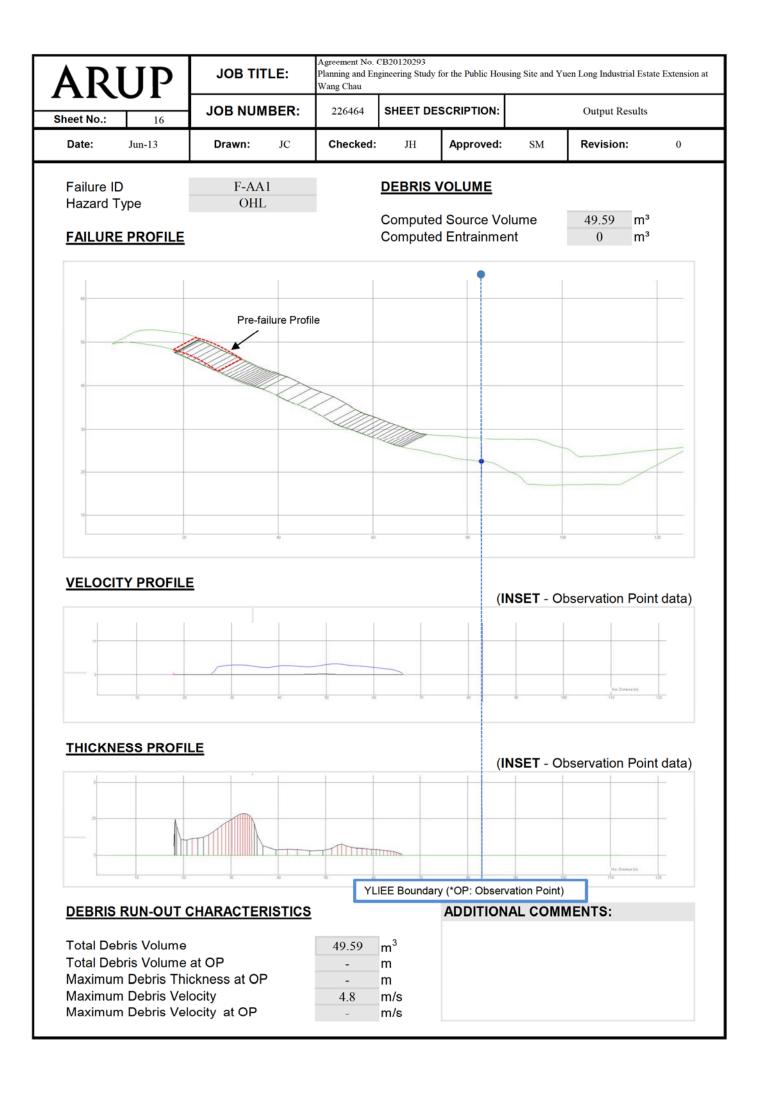


ARUP		JOB TITLE:		Agreement No. CB20120293 Planning and Engineering Study for the Public Housing Site and Yuen Long Industrial Estate Extension at Wang Chau						
Sheet No.:	JOB NUMBER: 226464 SHEET DESCRIPTION: Input Parameters									
Date:	Jun-13	Drawn:	JC	Checked:	JH	Approved:	SM Revision: 0			


Failure ID	F-AA1	Estimated Source Volume	50.00	m ³
Hazard Type	OHL	Estimated Entrainment Volume	0	m³

SECTIONAL PROFILE

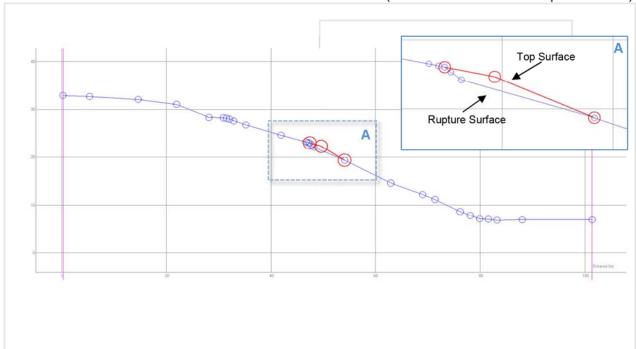
(INSET - Detailed view of rupture surface)



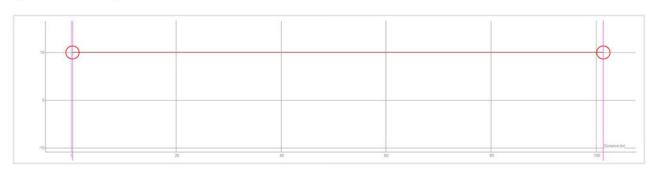
WIDTH PROFILE

MATERIAL PROPERTIES

Rheology	Unit Weight	Friction Angle (°)	Pore Pressure Coefficient	Friction Coefficient		Internal Angle of Friction (°)	Erosion Depth (m)	
	(kN/m^3)						Min	Max
Voellmy	20	25	-	-	-	35	0	0

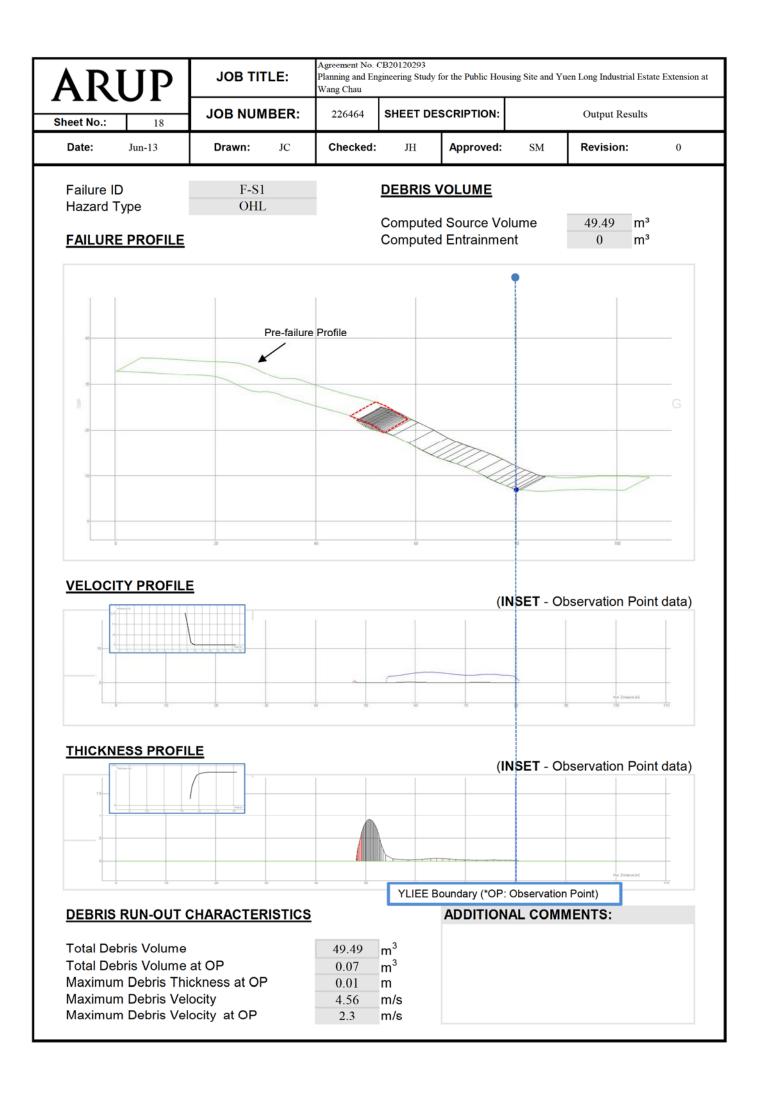


ARUP		JOB TITLE:		Agreement No. CB20120293 Planning and Engineering Study for the Public Housing Site and Yuen Long Industrial Estate Extension at Wang Chau						
Sheet No.:	17	JOB NUM	IBER:	226464	SHEET DES	SCRIPTION:	RIPTION: Input Parameters			
Date:	Jun-13	Drawn:	JC	Checked:	JH	Approved:	SM Revision: 0			


Failure ID	F-S1	Estimated Source Volume	50.00	m ³
Hazard Type	OHL	Estimated Entrainment Volume	0	m³

SECTIONAL PROFILE

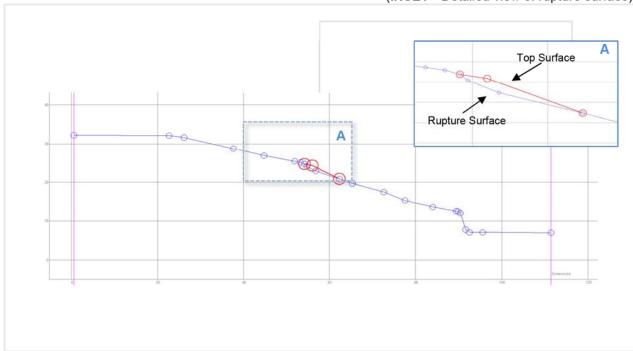
(INSET - Detailed view of rupture surface)



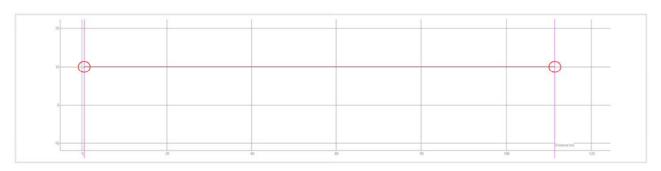
WIDTH PROFILE

MATERIAL PROPERTIES

Rheology	Unit Weight	Friction Angle (°)	Pore Pressure Coefficient	Friction Coefficient		Internal Angle of Friction (°)	Erosion Depth (m)	
	(kN/m^3)						Min	Max
Voellmy	20	25	-	-	-	35	0	0

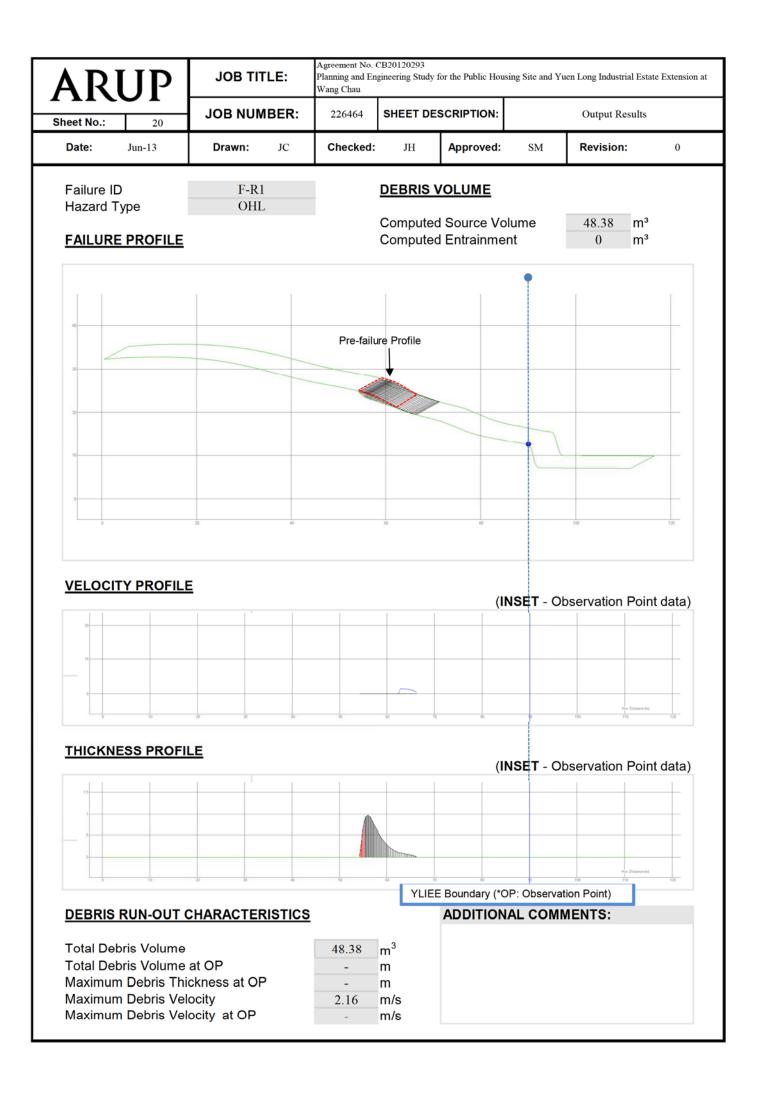


ARUP		JOB TITLE:		Agreement No. CB20120293 Planning and Engineering Study for the Public Housing Site and Yuen Long Industrial Estate Extension at Wang Chau						
Sheet No.: 19 JOB NUMBER			IBER:	226464	SHEET DES	SCRIPTION:	Input Parameters			
Date:	Jun-13	Drawn:	JC	Checked:	JH	Approved:	Approved: SM Revision:			


Failure ID	F-R1	Estimated Source Volume	50.00	m³
Hazard Type	OHL	Estimated Entrainment Volume	0	m³

SECTIONAL PROFILE

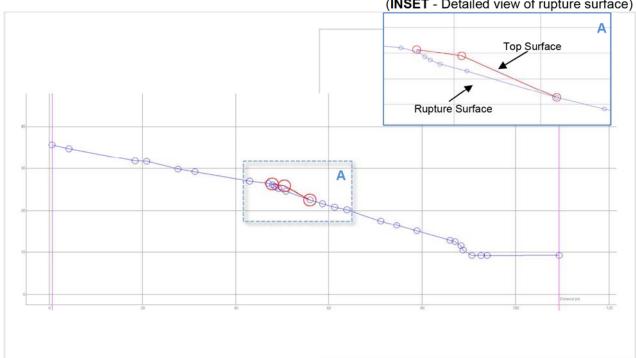
(INSET - Detailed view of rupture surface)



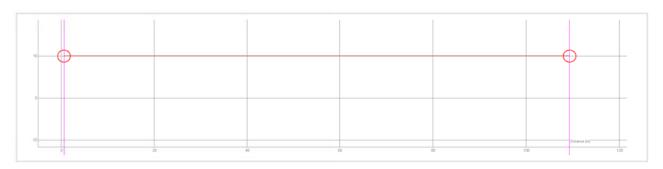
WIDTH PROFILE

MATERIAL PROPERTIES

Rheology	Unit Weight	Friction Angle (°)	Pore Pressure Coefficient	Friction Coefficient	pefficient Coefficient	Internal Angle of Friction (°)	Erosion Depth (m)	
	(kN/m^3)						Min	Max
Voellmy	20	25	-	-	-	35	0	0

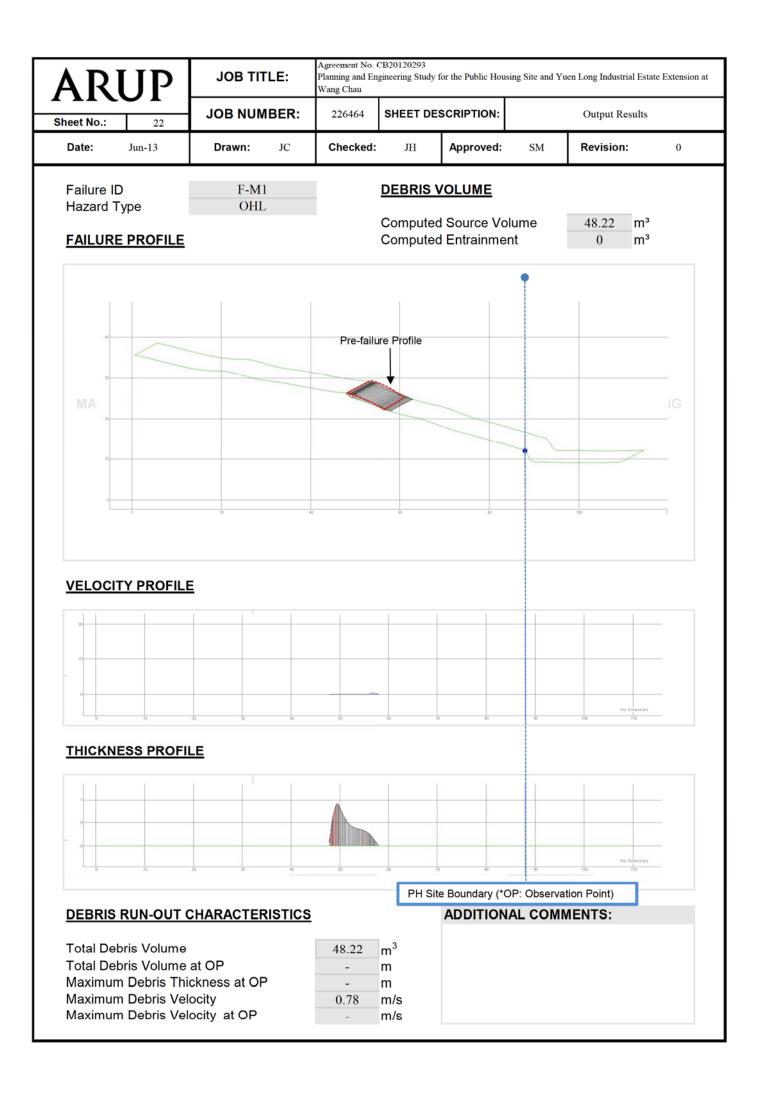


ARUP		JOB TITLE:		Agreement No. CB20120293 Planning and Engineering Study for the Public Housing Site and Yuen Long Industrial Estate Extension at Wang Chau						
Sheet No.: 21 JOB NUMBER:				226464	226464 SHEET DESCRIPTION: Input Parameters					
Date:	Jun-13	Drawn:	JC	Checked:	JH	Approved:	SM Revision: 0			


Failure ID	F-M1	Estimated Source Volume	50.00	m³
Hazard Type	OHL	Estimated Entrainment Volume	0	m³

SECTIONAL PROFILE

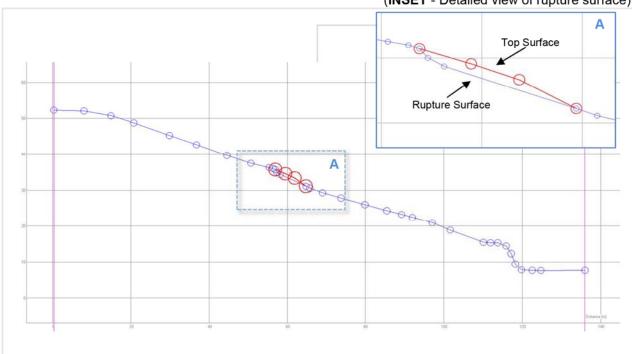
(INSET - Detailed view of rupture surface)



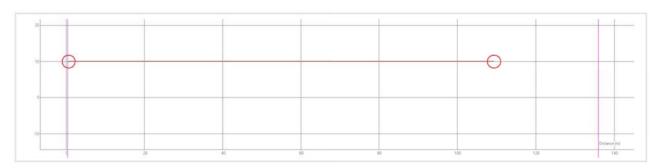
WIDTH PROFILE

MATERIAL PROPERTIES

Rheology	Unit Weight	Friction Angle (°)	Pore Pressure Coefficient	Friction Coefficient	ficient Coefficient	Internal Angle of Friction (°)	Erosion Depth (m)	
	(kN/m^3)						Min	Max
Voellmy	20	25	-	-	-	35	0	0

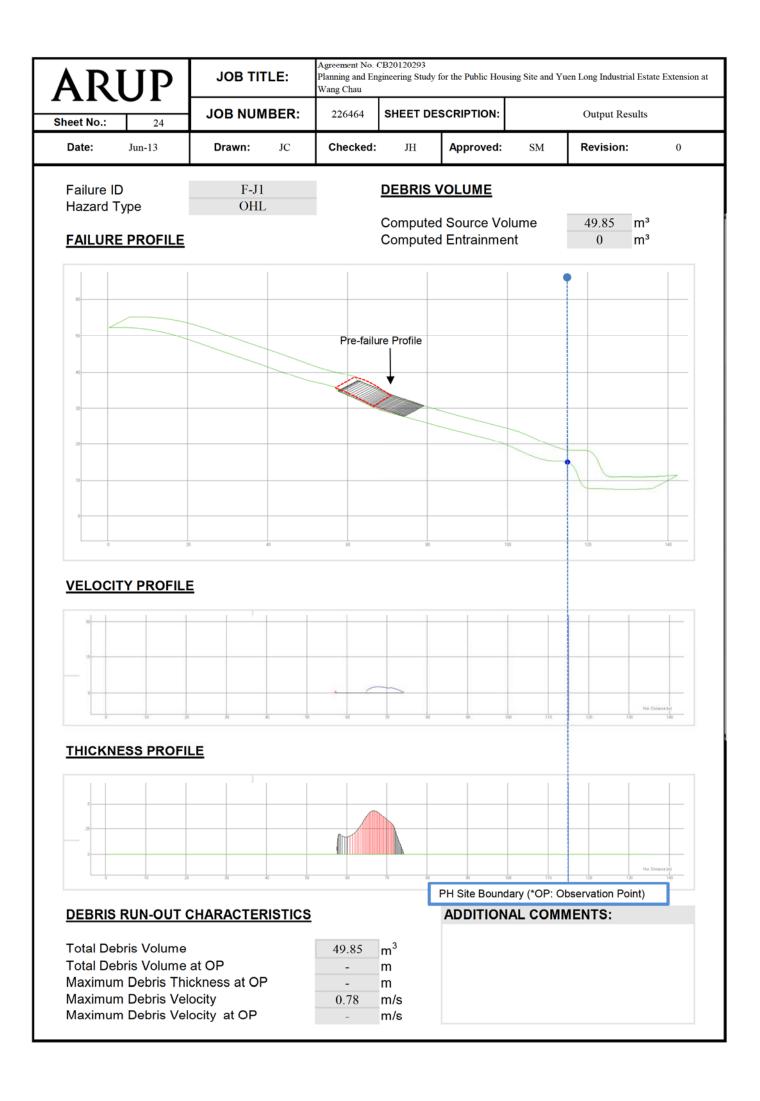


ARUP		JOB TITLE:		Agreement No. CB20120293 Planning and Engineering Study for the Public Housing Site and Yuen Long Industrial Estate Extension at Wang Chau					
Sheet No.: 23 JOB NUMBER:				226464 SHEET DESCRIPTION: Input Parameters					
Date:	Jun-13	Drawn:	JC	Checked:	JH	Approved:	: SM Revision: 0		


Failure ID	F-J1	Estimated Source Volume	50.00	m³
Hazard Type	OHL	Estimated Entrainment Volume	0	m³

SECTIONAL PROFILE

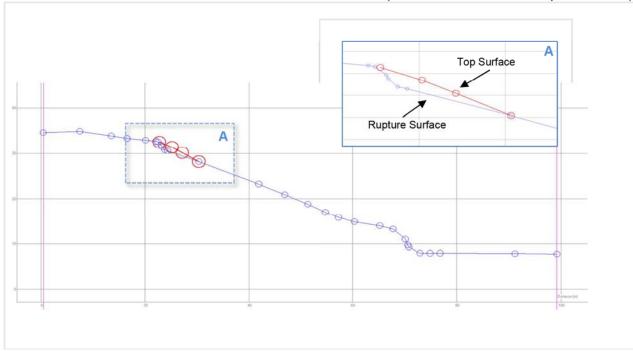
(INSET - Detailed view of rupture surface)



WIDTH PROFILE

MATERIAL PROPERTIES

Rheology	Unit Weight	Friction Angle (°)	Pore Pressure Coefficient	Friction Coefficient	Turbulence Coefficient	Internal Angle of Friction (°)	Erosion Depth (m)	
	(kN/m^3)						Min	Max
Voellmy	20	25	-	-	-	35	0	0

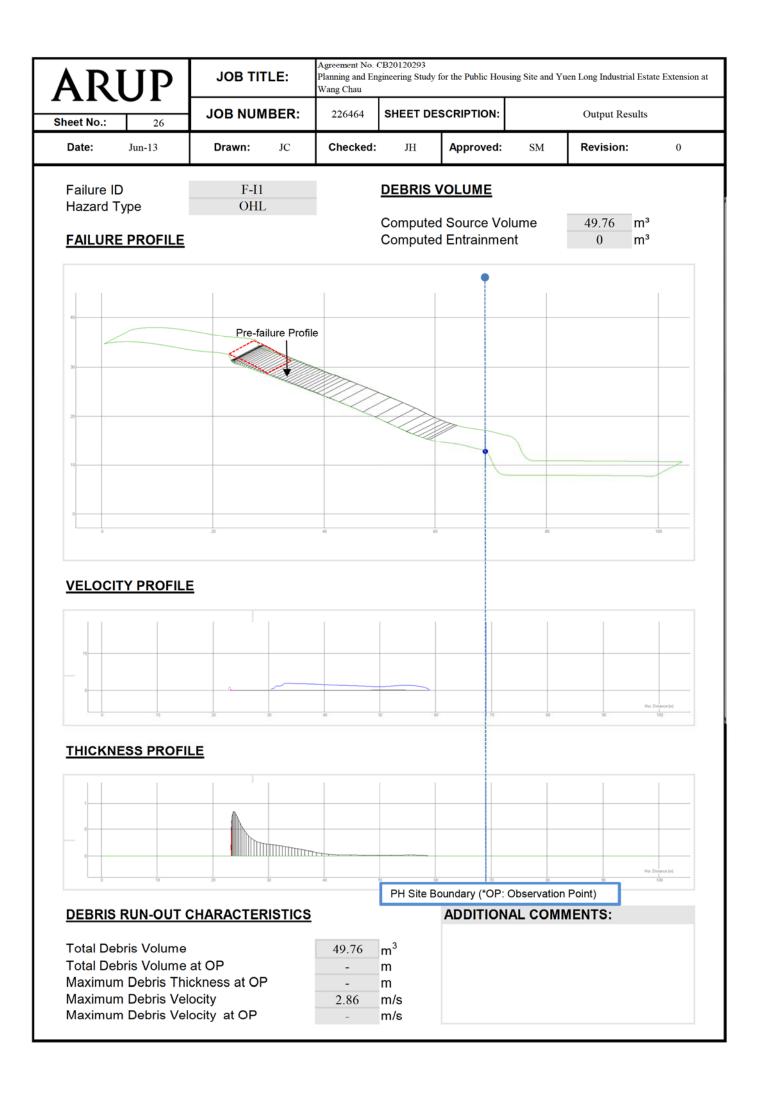


ARUP		JOB TITLE:		Agreement No. CB20120293 Planning and Engineering Study for the Public Housing Site and Yuen Long Industrial Estate Extension at Wang Chau						
Sheet No.:	Sheet No.: 25 JOB NUMBER: 226464 SHEET DESCRIPTION: Input Parameters				Input Parameters					
Date:	Jun-13	Drawn:	JC	Checked:	JH	Approved:	: SM Revision: 0			


Failure ID	F-I1	Estimated Source Volume	50.00	m³
Hazard Type	OHL	Estimated Entrainment Volume	0	m³

SECTIONAL PROFILE

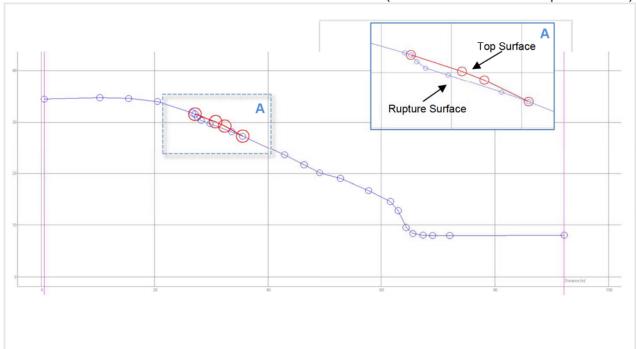
(INSET - Detailed view of rupture surface)



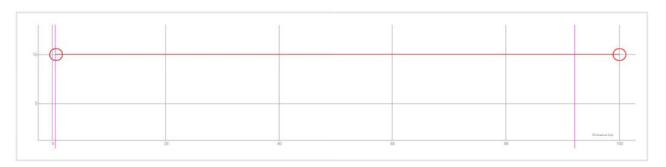
WIDTH PROFILE

MATERIAL PROPERTIES

Rheology	Unit Weight	Friction Angle (°)	Pore Pressure Coefficient	Friction Coefficient		Internal Angle of Friction (°)	Erosion Depth (m)	
	(kN/m^3)						Min	Max
Voellmy	20	25	-	-	-	35	0	0



ARUP		JOB TITLE:		Agreement No. CB20120293 Planning and Engineering Study for the Public Housing Site and Yuen Long Industrial Estate Extension at Wang Chau						
Sheet No.: 27 JOB NUMBER:				226464 SHEET DESCRIPTION: Input Parameters						
Date:	Jun-13	Drawn:	JC	Checked:	ЈН	Approved:	: SM Revision: 0			


Failure ID	F-H1	Estimated Source Volume	50.00	m ³
Hazard Type	OHL	Estimated Entrainment Volume	0	m³

SECTIONAL PROFILE

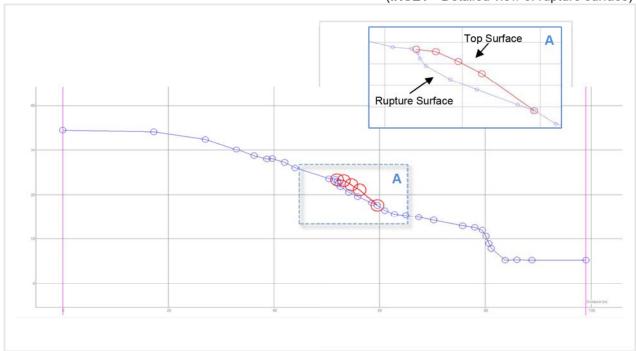
(INSET - Detailed view of rupture surface)



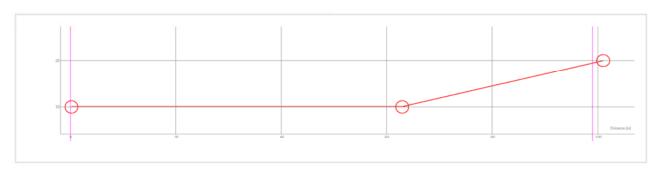
WIDTH PROFILE

MATERIAL PROPERTIES

Rheology	Unit Weight	Friction Angle (°)	Pore Pressure Coefficient	Friction Coefficient		Internal Angle of Friction (°)	Erosion Depth (m)	
	(kN/m^3)						Min	Max
Voellmy	20	25	-	-	-	35	0	0



ARUP		JOB TITLE:		Agreement No. CB20120293 Planning and Engineering Study for the Public Housing Site and Yuen Long Industrial Estate Extension at Wang Chau						
Sheet No.: 29 JOB NUMBER: 226464 SHEET DESCRIPTION: Input Parame				Input Parameters						
Date:	Jun-13	Drawn:	JC	Checked:	JH	Approved:	SM Revision: 0			


Failure ID	F-G1	Estimated Source Volume	100.00	m³
Hazard Type	OHL	Estimated Entrainment Volume	0	m³

SECTIONAL PROFILE

(INSET - Detailed view of rupture surface)

WIDTH PROFILE

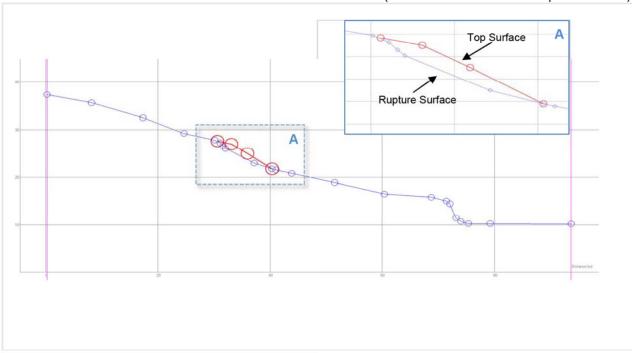
MATERIAL PROPERTIES

Rheology	Unit Weight	Friction Angle (°)	Pore Pressure Coefficient	Friction Coefficient	Turbulence Coefficient	Internal Angle of Friction (°)	Erosion Depth (m)	
	(kN/m^3)						Min	Max
Voellmy	20	25	-	-	-	35	0	0

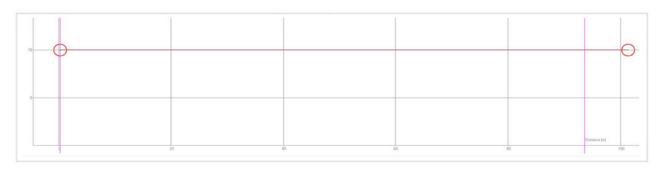
Agreement No. CB20120293 **ARUP** JOB TITLE: Planning and Engineering Study for the Public Housing Site and Yuen Long Industrial Estate Extension at Wang Chau JOB NUMBER: 226464 SHEET DESCRIPTION: Output Results Sheet No.: Approved: Date: Drawn: JC Checked: JΗ SM Revision: 0 Jun-13 F-G1 **DEBRIS VOLUME** Failure ID Hazard Type OHL Computed Source Volume m³ 99.33 **FAILURE PROFILE** Computed Entrainment m^3 Pre-failure Profile **VELOCITY PROFILE THICKNESS PROFILE** PH Site Boundary (*OP: Observation Point) **DEBRIS RUN-OUT CHARACTERISTICS ADDITIONAL COMMENTS:** Debris modelling stops immediately Total Debris Volume before the site boundary. Adjustments Total Debris Volume at OP were made to the failure geometry in

Total Debris Volume
Total Debris Volume at OP
Maximum Debris Thickness at OP
Maximum Debris Velocity
Maximum Debris Velocity at OP

99.33	m ³
-	m
-	m
4.96	m/s
-	m/s

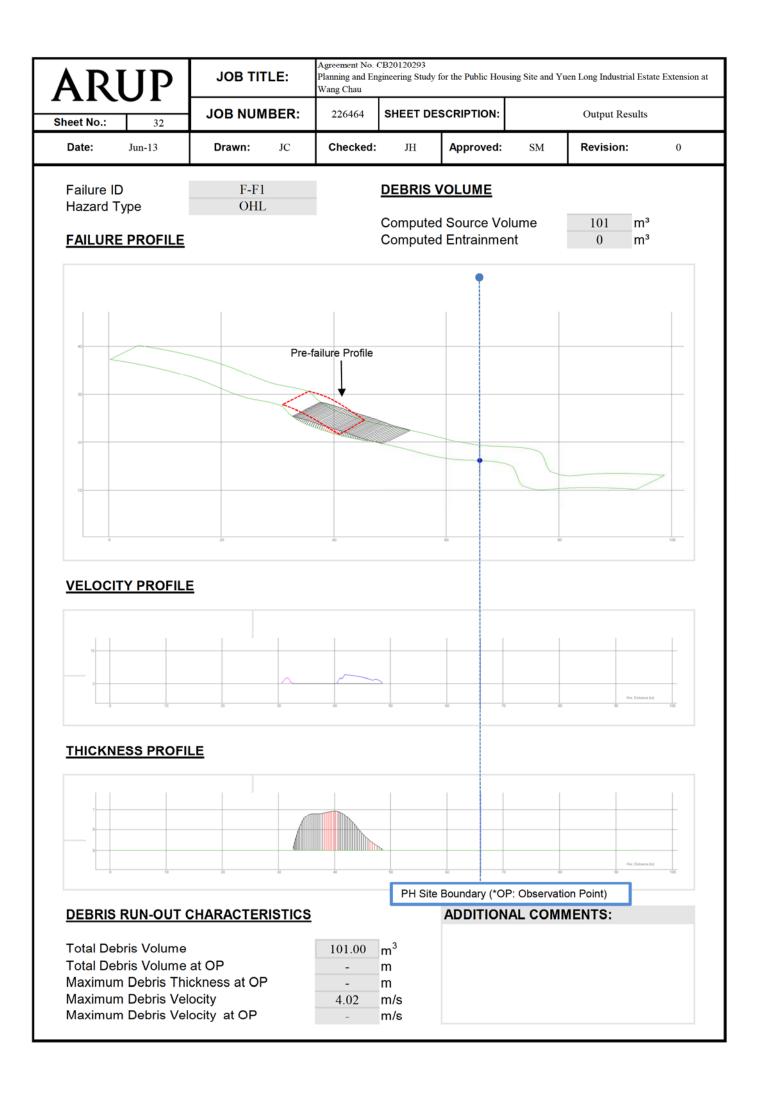

Debris modelling stops immediately before the site boundary. Adjustments were made to the failure geometry in order to encourage flow of the debris beyond the observation point, but this could not be achieved.

ARUP		JOB TITLE:		Agreement No. CB20120293 Planning and Engineering Study for the Public Housing Site and Yuen Long Industrial Estate Extension at Wang Chau					
Sheet No.:	31	JOB NUMBER:		226464	SHEET DESCRIPTION:		Input Parameters		
Date:	Jun-13	Drawn:	JC	Checked:	JH	Approved:	SM	Revision:	0


Failure ID	F-F1	Estimated Source Volume	100.00	m³
Hazard Type	OHL	Estimated Entrainment Volume	0	m³

SECTIONAL PROFILE

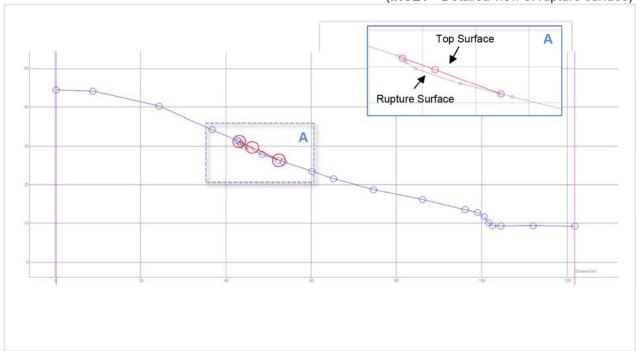
(INSET - Detailed view of rupture surface)



WIDTH PROFILE

MATERIAL PROPERTIES

Rheology	Unit Weight	Friction	Friction Pore Pressure Coefficient	Friction Coefficient	Turbulence Coefficient	Internal Angle of Friction (°)	Erosion Depth (m)	
	(kN/m^3)	Angle ()					Min	Max
Voellmy	20	25	-	-	-	35	0	0

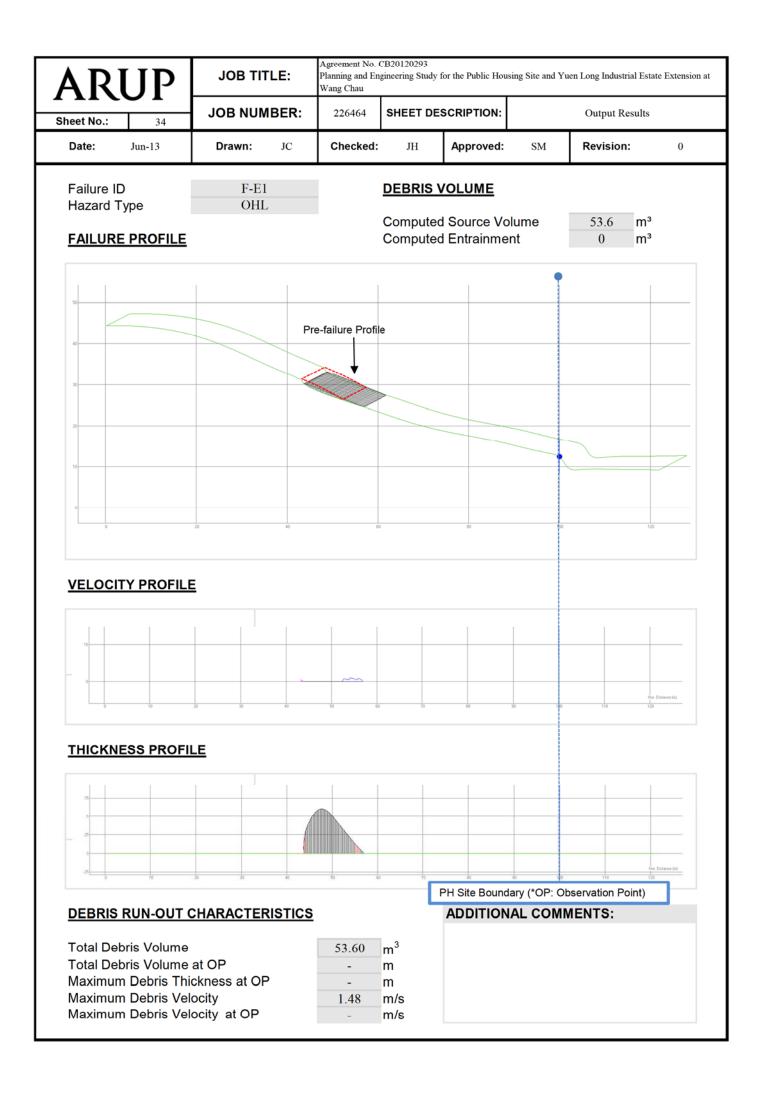


ARUP		JOB TITLE:		Agreement No. CB20120293 Planning and Engineering Study for the Public Housing Site and Yuen Long Industrial Estate Extension at Wang Chau					e Extension at
Sheet No.:	33	JOB NUMBER:		226464	SHEET DESCRIPTION:		Input Parameters		
Date:	Jun-13	Drawn:	JC	Checked:	ЈН	Approved:	SM	Revision:	0

Failure ID	F-E1	Estimated Source Volume	50.00	m³
Hazard Type	OHL	Estimated Entrainment Volume	0	m³

SECTIONAL PROFILE

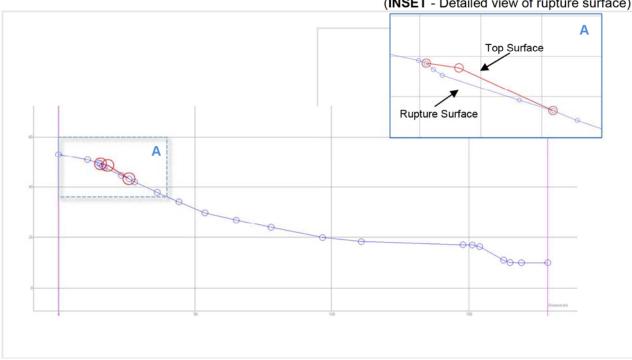
(INSET - Detailed view of rupture surface)



WIDTH PROFILE

MATERIAL PROPERTIES

Rheology	Unit Weight (I-N/2-3) Friction Angle (Pore Pressure	Friction Coefficient	Turbulence Coefficient	Internal Angle of	Erosion Depth (m)	
	(kN/m^3)	Angle ()	Coefficient	Coemolent	Coemolem	Friction (°)	Min	Max
Voellmy	20	25	-	-	-	35	0	0

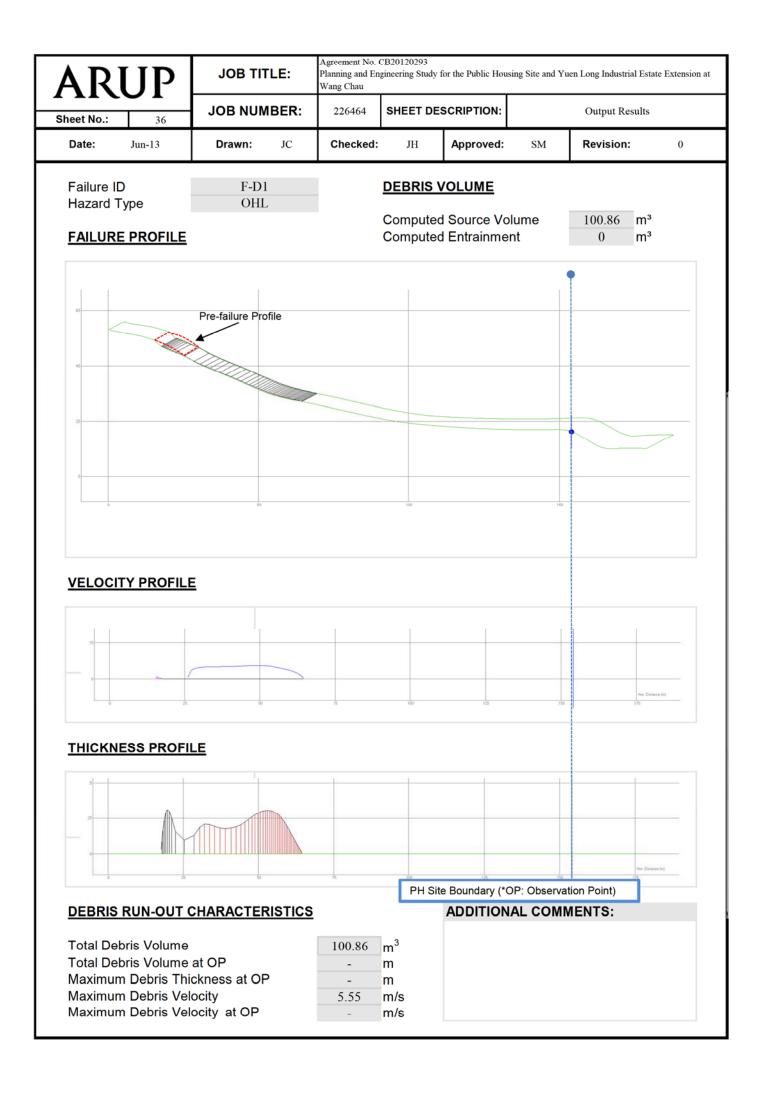


ARUP		JOB TITLE:		Agreement No. CB20120293 Planning and Engineering Study for the Public Housing Site and Yuen Long Industrial Estate Extension at Wang Chau					
Sheet No.:	35	JOB NUMBER:		226464	SHEET DESCRIPTION:		Input Parameters		
Date:	Jun-13	Drawn:	JC	Checked:	JH	Approved:	SM	Revision:	0

Failure ID	F-D1	Estimated Source Volume	100.00	m³
Hazard Type	OHL	Estimated Entrainment Volume	0	m³

SECTIONAL PROFILE

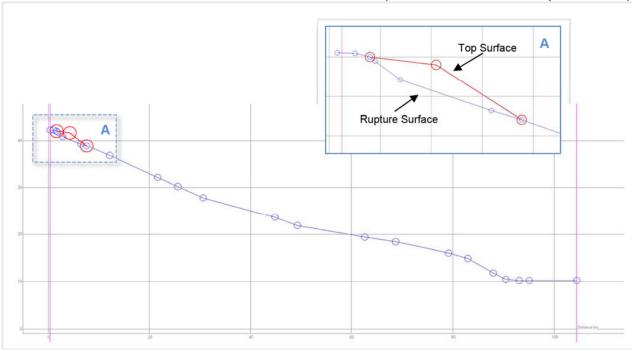
(INSET - Detailed view of rupture surface)



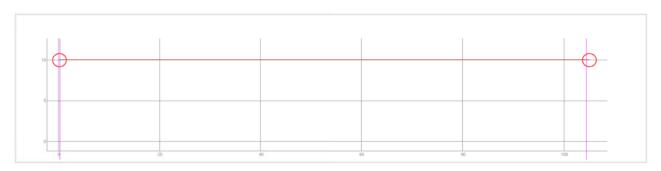
WIDTH PROFILE

MATERIAL PROPERTIES

Rheology	Unit Weight Angle		Pressure	Friction Coefficient	Turbulence Coefficient	Internal Angle of	Erosion Depth (m)	
	(kN/m^3)	Angle ()	Coefficient	Cocmoloni	Cocmoloni	Friction (°)	Min	Max
Voellmy	20	25	-	-	-	35	0	0

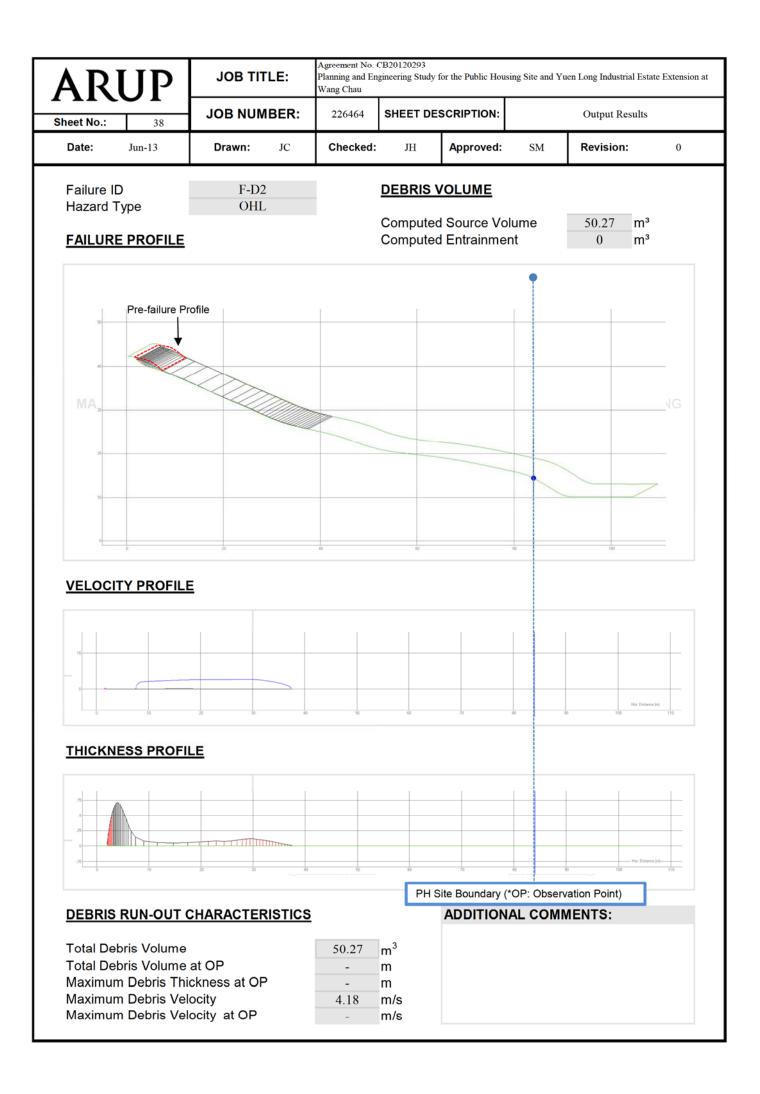


ARUP		JOB TIT	JOB TITLE:		Agreement No. CB20120293 Planning and Engineering Study for the Public Housing Site and Yuen Long Industrial Estate Extension at Wang Chau				
Sheet No.:	37	JOB NUMBER:		226464	SHEET DESCRIPTION:		Input Parameters		
Date:	Jun-13	Drawn:	JC	Checked:	ЈН	Approved:	SM	Revision:	0


Failure ID	F-D2	Estimated Source Volume	50.00	m³
Hazard Type	OHL	Estimated Entrainment Volume	0	m³

SECTIONAL PROFILE

(INSET - Detailed view of rupture surface)



WIDTH PROFILE

MATERIAL PROPERTIES

Rheology	Unit Weight (kN/m³)	Friction Angle (°)	Pore Pressure Coefficient	Friction Coefficient	Turbulence Coefficient	Internal Angle of Friction (°)	Erosion Depth (m)	
							Min	Max
Voellmy	20	25	-	-	-	35	0	0

Appendix H

Boulder Fall Analysis

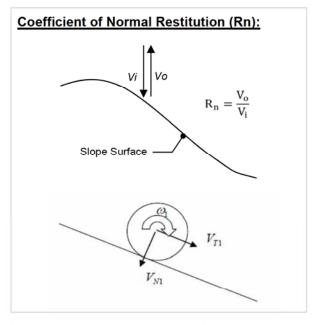
RI	JP	Ove Aru Partners I Kong L	Hong	CALCULATION SHEET RocFall BOULDER FALL ANA	
JOB TIT	LE			Agreement No. CB20120293 Planning and Engineering Study for the Public Housing Site and Y Estate Extension at Wang Chau	uen Long Industrial
IOD MIL	MDED			22/1//	
JOB NU	MBEK			226464	
REPOR	TITLE			Natural Terrain Hazard Assessment	Initial
CALCUL	ATED BY				
CHECK	ED BY				
APPRO\	/ED BY				
DATE				Jun-13	
CONTE	NTS OF SE	PREADSHE	<u>ET</u>		
	ction I.0	INTRODUC	NOIT	Description	Sheet No.
	2.0	METHOD (ALYSIS	1
	2.1	RocFall So			1
	2.2			RocFall Software	2
2	2.3			Data Collectors	2
3	3.0	BOULDER	FALL	ANALYSIS	3
	3.1			Parameters	3
	3.2			Analysis Along Section Line	4
	1.0			OCFALL ANALYSIS	8
	1.1	Summary of		lts	8
	5.0	CONCLUS	IONS		9
DEVISIO	MC	Cummant Day	lalanı	0	
REVISIO	NS CNC	Current Re	vision:	0	
Rev.	Date	Calculated by	Checked by	Description	
1					
		'		<u>'</u>	

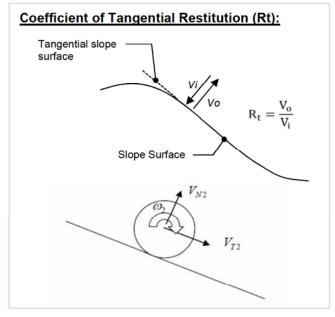
ARUP		JOB TITLE:	Planning and Er	Agreement No. CB20120293 Planning and Engineering Study for the Public Housing Site and Yuen Long Industrial Estate Extension at Wang Chau				state Extension at
Sheet No.: 1		JOB NUMBER:	226464	SHEET DES	SCRIPTION:	Introdu	ction and Methodo RocFall Analysis	0.7
Date:	Jun-13	Prepared $_{ m JC}$	Checked JH		Approved by:	SWM	Revision:	0

1.0 INTRODUCTION

The potential boulder fall movements within critical catchment areas were analyzed based on the findings of the boulder survey and field inspections of the sites.

2.0 METHOD OF ANALYSES


2.1 RocFall Software


The computer programme RocFall has been used for the probabilistic simulation and statistical analysis of potential boulder falls. Analysis of boulder falls has been carried out based on the critical slope geometry, friction angles and material properties (coefficients of restitution) of the sliding surface identified from the field inspections and boulder survey data. The maximum travel distance of rocks, total kinetic energy, translational velocity and bouncing height of the potential boulder have been measured and plotted against the distance from the boulder source. The results have then used to determine appropriate mitigation strategies.

The critical sections for analysis were identified based on a GIS assessment of potential boulder fall trajectory and the slope friction angle, which is the same as the slope angle but with a 1° to 3° standard deviation of each segment assigned. The material coefficients, the coefficient of normal restitution (Rn) and coefficient of tangential restitution (Rt) are illustrated below and were determined based on the site inspection and with due reference to the default values provided by the computer program. The material coefficients used for the analysis are summarised as follows:

Materials	Rn	Rt
Soil with vegetation	0.3	0.8
Asphalt	0.4	0.9

Rock Type	Rock Density (kg/m³)
Metasiltstone	2600

Vi	Incoming Velocity
Vo	Outgoing Velocity

ARUP		JOB TITLE:	Planning and En	Agreement No. CB20120293 Planning and Engineering Study for the Public Housing Site and Yuen Long Industrial Estate Extension at Wang Chau				
Sheet No.: 2		JOB NUMBER:	226464	SHEET DES	SCRIPTION:	Introdu	ction and Method RocFall Analysis	05
Date:	Jun-13	Prepared _{JC}	Checked by:	ЈН	Approved by:	SWM	Revision:	0

2.2 Assumptions for RocFall Analysis

- Each rock block or boulder is modelled as a particle.
- The particle is an infinitesimal circle.
- There is no interaction between particles, only with slope segments and barriers.
- The mass of the particle is determined at the beginning of the stimulation and stays constant throughout the simulation. That is the rock cannot split into multiple pieces during the simulation.
- The friction angle of the slope segment is assumed to be the slope angle of that segment as the rock is presently stable on the slope.
- 1000 iterations are carried out for each analysis for a reasonable result based on probability.
- Boulder fall initiation point was input using the 'point seeder' function in order to indicate boulder falls within those zones / clusters identified as having potential for instability.

2.3 Maximum Values/Data Collectors

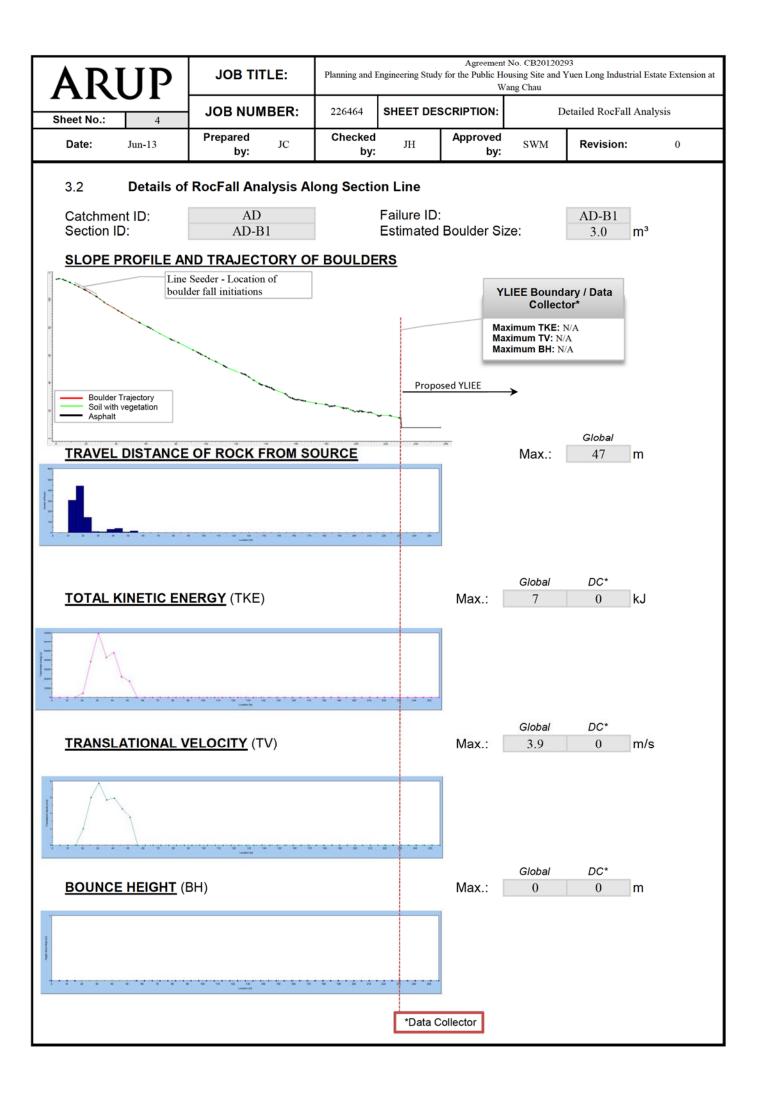
For each analysis the following values will be indicated along the trajectory of the boulders:

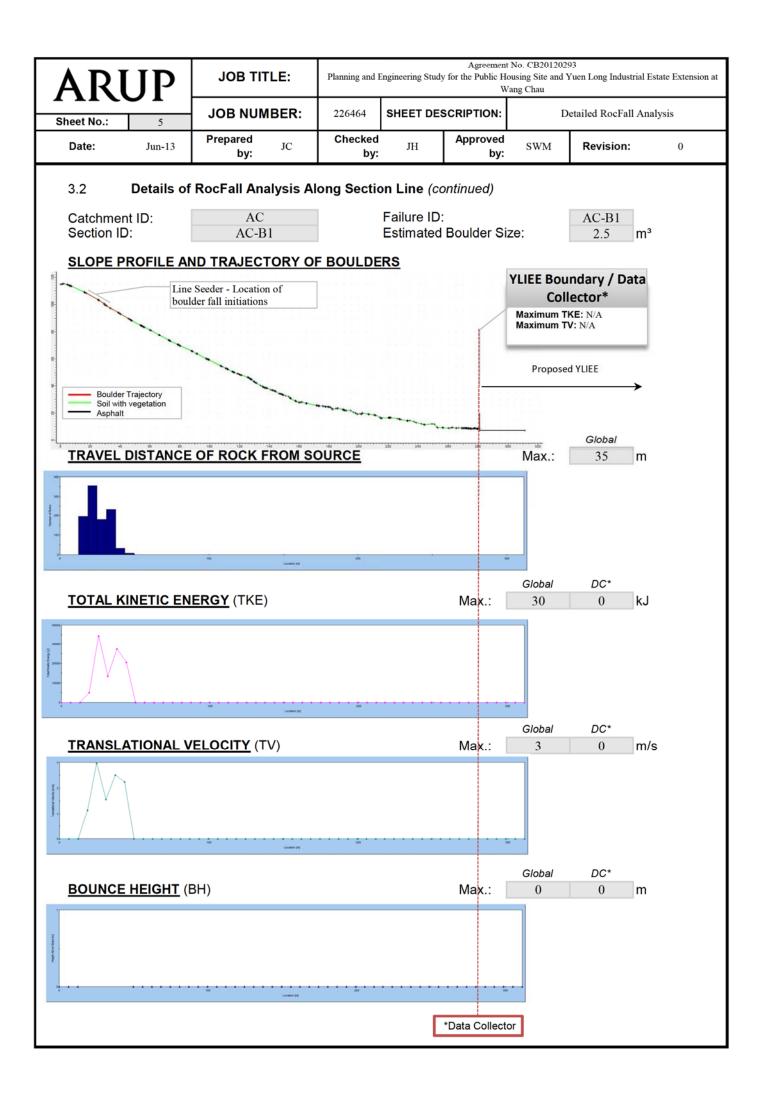
- Global Maximum
- Data Collector (DC) Maximum

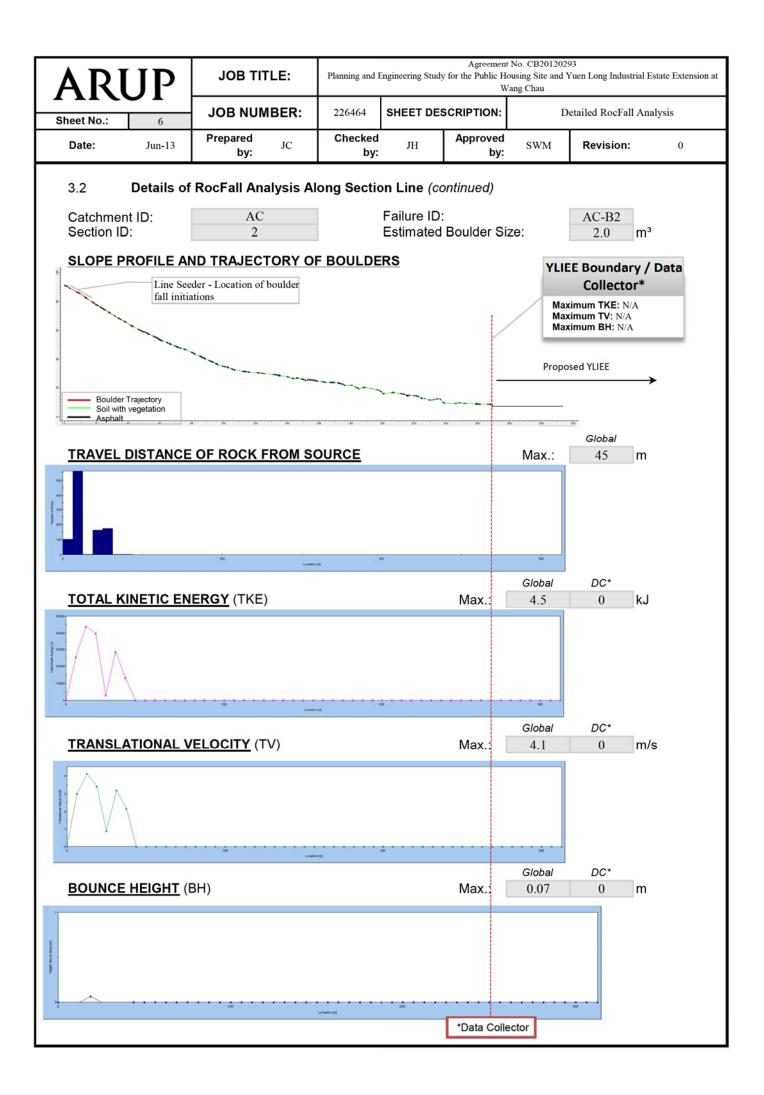
Global maximum value indicates the overall highest value for a given output parameter.

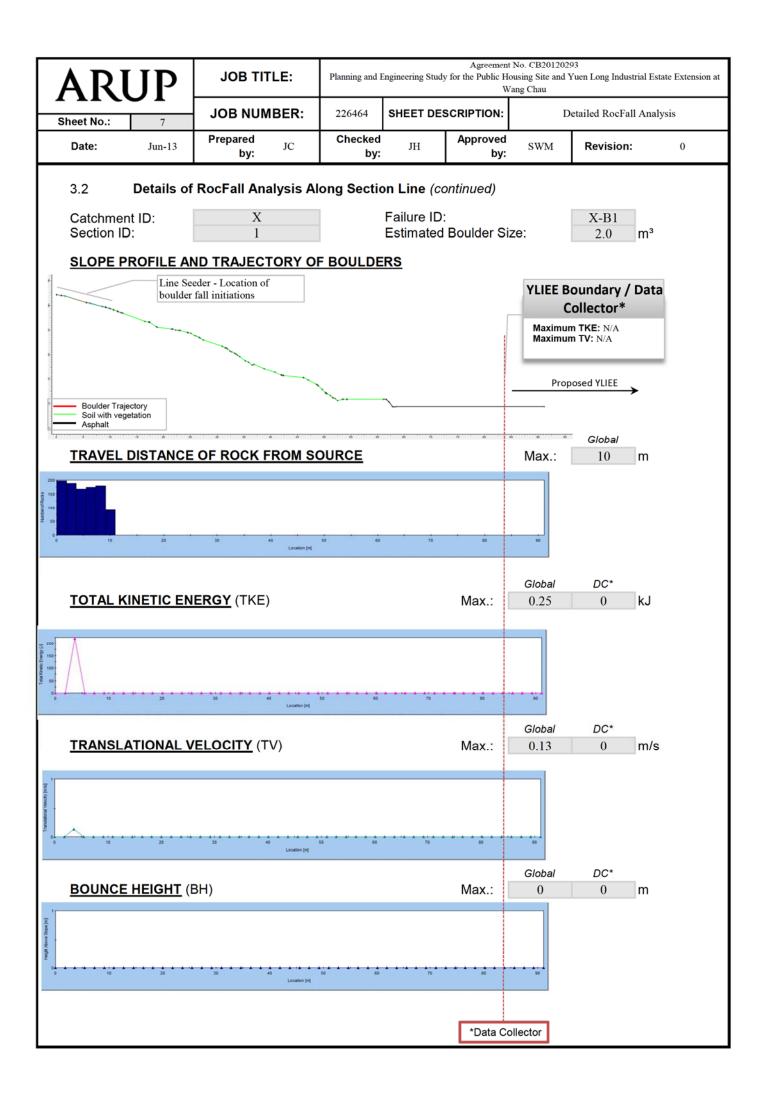
A "data collector" is a line segment that gathers information about the rocks that pass through the data collector while the rocks are being thrown down the slope. "Data collectors" record the velocity, kinetic energy and bounce height of all rocks that pass through the data collector as they travel down the slope. Data collectors can be added onto the slope profile to determine such information at specified locations without altering the boulder fall trajectory down slope.

There is no restriction on the number of data collectors or where they can be placed. Data collectors are optional and can be added to RocFall analysis to indicate the boulder fall data at the proposed mitigation measures for reference purpose.


ARUP		JOB TITLE:	Planning and I	Agreement No. CB20120293 Planning and Engineering Study for the Public Housing Site and Yuen Long Industrial Estate Extension at Wang Chau				
Sheet No.: 3		JOB NUMBER:	226464	SHEET DES	SCRIPTION:	Input Pa	arameters for RocF	all Analysis
Date:	1-Jun	Prepared JC by:	Checked by:	JH	Approved by:	SWM	Revision:	0


3.0 BOULDER FALL ANALYSIS


3.1 Summary of Input Parameters


- 0	Catchment ID	AD	AC	AC	X	-	-	-
:ard e/I⊏	Section ID	AD-B1	AC-B1	AC-B2	X-B1	ı	1	-
Hazard Type/ID	Seeder Type	Line	Line	Line	Line	1	1	-
	Failure ID	AD-B1	AC-B1	AC-B2	X-B1	1	1	-
ope J	Estimated Boulder size (m³)	3.0	2.5	2.0	2.0	1	1	-
Boulder/Slope Geometry	Estimated Boulder mass (kg)	7,800	6,500	5,200	5,200	1	1	-
Bou	Average Slope Gradient (°)	27	28	20	30	1	1	-

NOTE: See Figure F2 for Study Area, NT Catchment locations, section lines and seeder locations

ARIJP		JOB TITLE:	Agreement No. CB20120293 Planning and Engineering Study for the Public Housing Site and Yuen Long Industrial Estate Extension at Wang Chau				
Sheet No.:	8	JOB NUMBER:					llysis
Date:	Jun-13	Prepared _{JC}	Checked JH Approved SWM Revision:		0		

4.0 SUMMARY OF ROCFALL ANALYSIS

4.1 Summary of Results

	Catchment ID	AD	AC	AC	X	-	-	-
ard e/ID	Section ID	AD-B1	AC-B1	AC-B2	X-B1	•	-	-
Hazard Type/ID	Seeder Type	Line	Line	Line	Line	•	1	-
	Failure ID	AD-B1	AC-B1	AC-B2	X-B1	•	•	-
us	Travel Distance from Source (m)	47	35	45	1	1	-	-
aximur	Total Kinetic Energy (kJ)	7	30	5	0	ı	ı	•
Global Maximums	Translational Velocity (m/s)	3.9	3.0	4.1	0.1	1	1	-
15	Bounce Height (m)	0.0	0.0	0.1	0.0	ı	1	-
ctor	Max. Total Kinetic Energy (kJ)	0	0	0	0	1	1	-
Data Collector Maximums	Max. Translational Velocity (m/s)	0.0	0.0	0.0	0.0	ı	ı	•
Dat:	Max. Bounce Height (m)	0.0	0.0	0.0	0.0	-		•
Boulder	Boulder reaches site platform		No	No	No	-	-	-
Mitigat	ion Works Required	No	No	No	No		-	-

ARUP Sheet No.: 9		JOB TITLE:		Agreement No. CB20120293 Planning and Engineering Study for the Public Housing Site and Yuen Long Industrial Estate Extension at Wang Chau					
		JOB NUMBER:		226464	SHEET DESCRIPTION:		Conclusions		
Date:	Jun-13	Prepared by:	JC	Checked by:	ЛН	Approved by:	SWM	Revision:	0

5.0 **CONCLUSIONS**

Based on the boulder fall analyses of the natural terrain adjacent to the proposed development, it can be concluded that the proposed site is unlikely to be affected by boulder fall hazards. Although a number of boulders, if initiated, may travel within the natural terrain, the modelling shows that they travel less than 50m from the source, and will come to rest within the natural terrain, not impacting on the proposed development. As a result of site incpection, and subsequent modelling mitigation measures for boulder fall hazard are not required for the proposed development.