立法會PWSC138/19-20(01)號文件

香港特別行政區政府

The Government of the Hong Kong Special Administrative Region

發展局 起動九龍東辦事處 九龍 觀塘 海濱道 122 號

Energizing Kowloon East Office Development Bureau

No. 122, Hoi Bun Road, Kwun Tong, Kowloon

本處檔號

Our reference : () in DEVB/W/EKEO/9-50/2

來函檔號

Your reference:

電話號碼 Tel No.:

: 3904 1648

傳真號碼

Fax No.:

: 3904 1161

香港中區立法會道1號

立法會綜合大樓

立法會秘書處

工務小組委員會秘書

(經辦人:盧慧欣女士)

盧女士:

立法會工務小組委員會 2019年10月30日及11月6日會議的跟進事項

在2019年10月30日及11月6日的工務小組委員會會議 上,有委員要求政府就議程項目「171CD號—活化翠屏河」提供 為工程計劃進行的交通影響評估報告和擬議翠屏河的橫切面圖, 以顯示河床現時及在工程完成後的深度,以及在設置智能水閘後 的最高及最低水位。隨函附上相關報告及圖則(圖則編號 DDP/171CD/0010、0011 及 0012),以供委員參閱。

起動九龍東專員

副本分送:

財經事務及庫務局局長 (經辦人: 趙廣堅先生)

渠務署署長 (經辦人: 王協力先生)

2020年3月13日

Agreement No. CE 58/2017 (DS) Energizing Kowloon East - Revitalization of Tsui Ping River - Design and Construction

Final Report on Traffic Review and Traffic Management Plan

<u>Disclaimer for disclosure of Final Report on Traffic Review and Traffic</u> <u>Management Plan</u>

The Final Report on Traffic Review and Traffic Management Plan was prepared solely for "Agreement No. CE 58/2017(DS) Energizing Kowloon East – Revitalization of Tsui Ping River – Design and Construction" and shall not be quoted to or relied upon by any person without the HKSAR Government's written consent.

Table of Contents

1.	INTF	RODUCTION	1
	1.1	Project Scope	1
	1.2	Objectives of the Report	2
	1.3	Structure of the Report	3
2.	THE	PROJECT	
	2.1	Site Location	
	2.2	Construction Schedule	4
3.	EXIS	STING TRAFFIC CONTEXT	5
	3.1	Existing Road Network	5
	3.2	Vehicular and Pedestrian Traffic Survey	6
	3.3	Pedestrian Walkway Assessment	8
	3.4	Junction capacity Performance	10
	3.5	Link Capacity Assessment	10
4.	TRA	FFIC FORECAST	12
	4.1	Methodology	12
	4.2	Growth Factor Determination	12
	4.3	Other Planned Developments	14
	4.4	Reference Vehicular Traffic and Pedestrian Trips Forecast	15
	4.5	Construction Traffic Generation	16
	4.6	Pedestrian Trips Generation from the Project	16
	4.7	Design Traffic Flows during Construction Stage	16
	4.8	Design Traffic Flows during Operation Stage	16
	4.9	Design Pedestrian Trips during Construction Stage	17
	4.10	Design Pedestrian Trips during Operation Stage	17
5.	CON	ISTRUCTION TRAFFIC IMPACT ASSESSMENT	18
	5.1	Temporary Traffic Management Scheme (TTMS)	18
	5.2	Construction Traffic Impact Assessment	24
6.	TRA	FFIC IMPACT ASSESSMENT	30
	6.1	Pedestrian Traffic Impact Assessment	30
	6.2	Operational Vehicular Traffic Impact Assessment	34
7.	PED	ESTRIAN TRAFFIC ENHANCEMENT MEASURES	35
	7.1	Introduction	
	7.2	Proposed Additional Crossing Facilities at Wai Fat Road (J9)	36

	7.3		oposed Additional Crossings Facilities across Kwun Tong By-pass Slip Roads	
	7.4	Pro	oposed Permanent Relocation of Existing Footbridge Ramp of Footbridge	
	7.5		oposed Landscaped Walkway FB06	
8.	SUN	ИΜА	ARY AND CONCLUSION	14
	8.1	Su	ımmary	14
	8.2	Со	onclusion	15
List	of Ap	per	ndices	
Арре	endix	Α	Junction Calculations Sheets	
Арре	endix	В	CEDD Contract No. CV/2015/01 Provision of Universal Access Facilities of Highway Structure – Package 1 Contract 2 Drawing No. UAF 2/CV/KF90/0101	
Арре	endix	С	Queue Length Calculations Sheets	
List	of Ta	bles	s	
Table	e 3.1:	Loc	cation Plan for Pedestrian Assessment	. 6
Table	e 3.2:	List	t of Critical Junctions and Road Sections	. 7
Table	e 3.3:	Ped	destrian Walkway Level of Service (LOS)	. 8
Table	e 3.4:	Exi	isting Operational Assessment for Pedestrian Walkways	. 9
Table	e 3.5:	Exi	isting Junction Performance	10
Table	e 3.6:	Exi	isting Link Capacity	11
Table	e 4.1:	Ter	ritory Population and Employment Data Matrices (TPEDM) Planning Data for	
		Sel	lected Zone	12
Table	e 4.2:	His	storical Annual Traffic Census (ATC) Data for Selected Roads	13
Table	e 4.3:	De	velopment Schedule of Major Planned/ Approved Developments in the Vicinity	
Toble	- 1 1·		opted Trip Rates for the Committed / Planned Development	
Iable	₹ 4 .℧.		opted Pedestrian Trips Generation for the Committed / Planned Development	
Table	e 4.6:		ak Hour Visitor Trip Rates for Laguna Park	
			ar 2023 Operational Assessment for Pedestrian Walkways (Reference	-
			enario)	24

Table 5.2: Year 2023 Operational Assessment for Pedestrian Walkways (Construction	
Design Scenario)	25
Table 5.3: Year 2023 Junctions Performance	27
Table 5.4: Year 2023 Reference Link Capacity	28
Table 5.5: Year 2023 Construction Design Link Capacity	29
Table 6.1: Year 2023 Operational Assessment for Pedestrian Walkways (Reference	
Scenario)	30
Table 6.2: Year 2028 Operational Assessment for Pedestrian Walkways (Reference	
Scenario)	31
Table 6.3: Year 2023 Operational Assessment for Pedestrian Walkways	32
Table 6.4: Year 2028 Operational Assessment for Pedestrian Walkways	33
Table 7.1: Years 2023 & 2028 Junction Performance of Proposed Signalized Pedestrian	
Crossing at Wai Fat Road	38
Table 7.2: Years 2023 & 2028 Calculated Average Queue Length along Wai Fat Road	38
Table 7.3: Existing Pedestrian Demand Across Wai Fat Road	40
Table 7.4: Estimated Pedestrian Demand at Proposed Wai Fat Road Crossing	40
Table 7.5: Years 2023 & 2028 Operational Assessment for Re-Provisioned Footbridge Ra	amp
	40

List of Figures

T: 1 1	Dusing the account Diagram
Figure 1.1	Project Layout Plan
Figure 3.1	Location Plan
Figure 3.2	Existing Traffic Flow
Figure 4.1	Construction Traffic Routings
Figure 4.2	Year 2023 Reference Traffic Flow
Figure 4.3	Year 2023 Constrcution Design Traffic Flow
	Temporary Traffic Management Scheme in Zone A for Construction of the
Figure 5.1	New Ramp for KF90
	Temporary Traffic Management Scheme in Zone A for Removal of
Figure 5.2	Footbridge Ramp and Construction of Tsui Ping River North-western side
	Temporary Traffic Management Scheme in Zone A for Removal of
Figure 5.3	Footbridge Ramp and Construction of Tsui Ping River South-eastern side
Figure 5.4	Temporary Traffic Management Scheme in Zone A for Loading / Unloading
	Temporary Traffic Management Scheme in Zone B for Construction of Tsui
Figure 5.5	Ping River North-western side

Temporary Traffic Management Scheme in Zone B for Construction of Tsui
Ping River South-eastern side
Temporary Traffic Management Scheme in Zone B for Loading / Unloading
Temporary Traffic Management Scheme in Zone C for Construction of Tsui
Ping River
Conceptual Temporary Traffic Management Scheme in Zone C for
Construction of Signalized Pedestrian Crossing across Wai Fat Road
Conceptual Temporary Traffic Management Scheme in Zone C for Bus Lay-
by Re-construction and Modification of Footpath
Conceptual Temporary Traffic Management Scheme in Zone D along Kwun
Tong By-pass
Junction Improvement Scheme at Junction of Wai Fat Road / Cha Kwo Ling
Road / Shing Yip Street (J4) under study of Ex-Cha Kwo Ling Kaolin Mine
Site in MPC Paper No. 19/14
Junction Improvement Scheme at Junction of Wai Yip Street / Wai Fat Road
(J5) under study of Ex-Cha Kwo Ling Kaolin Mine Site in MPC Paper No.
19/14
Proposed Signalized Pedestrian Crossing at Wai Fat Road (J9)
Junction Improvement Scheme at Junction of Wai Fat Road / Cha Kwo Ling
Road / Shing Yip Street (J4) by Energizing Kowloon East Office's Study
Proposed Junction Modification Scheme at Junction of Wai Yip Street / Wai
Fat Road (J5)
Pedestrian Route between Tsui Ping River and Promenade
Provision of Northern Footbridge Ramp of KF90
Pedestrian Crossing Facilities at Junction of King Yip Street and Hung To
Road
Pedestrian Crossing Facilities and Disabled Parking Space at King Yip
Street and Hing Yip Street

1. INTRODUCTION

1.1 Project Scope

- 1.1.1 The Government has adopted a visionary, coordinated and integrated approach to transform Kowloon East (KE) into an attractive additional core business district (CBD2) to support Hong Kong's economic development. A multi-disciplinary Energizing Kowloon East Office (EKEO) was set up in the Development Bureau (DEVB) in 2012 to steer and oversee the transformation of Kowloon East. To achieve the policy objective, EKEO formulated an evolving Energizing Kowloon East Conceptual Master Plan (CMP) that highlights the latest initiatives. The latest Conceptual Master Plan version 5.0 (CMP 5.0) was published in November 2016 and has five focuses, namely walkability and mobility, green CBD, smart city, socioeconomic vibrancy and the "Spirit of Creation".
- 1.1.2 One of the 10 Main Tasks in CMP 5.0 is to develop environmental, ecological and landscape proposals to transform the King Yip Street nullah into Tsui Ping River without compromising its storm water discharge function and capacity. Aligned with the policy objective, this project will enhance the image of the district, improve connectivity and the public space, hence acting as a catalyst to the transformation of KE into an attractive CBD2.
- 1.1.3 The King Yip Street nullah was constructed more than 50 years ago. It is located near Kwun Tong Promenade and next to Laguna Park and the former Shing Yip Street Rest Garden.
- 1.1.4 Atkins China Ltd (ACL) was commissioned by DSD in December 2017 to undertake the Project "Agreement No. CE 58/2017 (DS) Energizing Kowloon East Revitalization of Tsui Ping River Design and Construction" (hereinafter called the Project).
- 1.1.5 For the purpose of this Project, the scope comprises the transformation of about one kilometre of the existing nullah between Kai Lim Road and its estuary at the harbour, alongside King Yip Street, King Yip Lane and Tsui Ping Road into Tsui Ping River with environmental, ecological and landscape upgrading with associated enhancement of drainage capacity. The river is divided into four zones by existing roads of Kwun Tong Road, Shing Yip Street and Wai Yip Street, and the sections are identified as Zones A to D from the upstream towards the downstream.
- 1.1.6 To manifest the water body of the revitalized river, the water level of the river is to be regulated. This is achieved through a number of measures, that includes installation of a water gate and supplementing scenic water from two stormwater storage tanks at the upstream part of the drainage catchment and by seawater pumping system.
- 1.1.7 The Project also includes the associated works to match with the assignment theme of enhancing connectivity and walkability by means of provision of walkways, bridges and landscaped decks at the river. The layout plan of the Assignment is shown in **Figure 1.1**.
- 1.1.8 The objectives of this Project are to implement the works under the Project as described above from adoptive review, investigations, impact assessments, public

consultation, detailed design, tendering, construction to the commissioning of the works in accordance with an agreed programme.

1.2 Objectives of the Report

- 1.2.1 As part of the Project, as required under Clause 6.2.14 and 6.14 of the Brief, a Traffic Impact Assessment (TIA) Report prepared under Agreement No. CE 79/2014 (DS) in the Investigation Phase of the Project shall be reviewed, a Report on Traffic Review and Traffic Management Pan (hereafter called the Report) is required. The objectives of the Report are:
 - to identify and describe the elements of the community and the existing traffic characteristics likely to be affected by the Project, and/or likely to cause adverse impacts upon the Project, including both the existing and proposed road network during the construction of the Project and also during the management/maintenance/operation of the Project;
 - to introduce a structured and systematic approach to identifying, assessing and mitigating potential adverse traffic impacts which might arise from the Project during the construction and subsequent management/maintenance stages;
 - to propose suitable temporary traffic diversion schemes and traffic arrangement schemes during construction to accommodate existing traffic flow at the time of construction and subsequent management/maintenance of the sewerage/drainage works of the Project so that any adverse traffic impacts can be kept to a minimum and mitigated to an acceptable level;
 - to identify, assess and specify methods, measures and standards to be included in the detailed design and construction of the Project which are necessary to mitigate these impacts and reduce them to an acceptable levels;
 - to demonstrate that with all mitigation measures introduced, the Project will have no detrimental traffic impacts within the project site and to the areas adjacent to the Project;
 - to assess the long-term traffic impacts on the road network arising from the Project during operation and maintenance stage, and propose associated mitigation measures; and
 - to enable an agreement in principle to be reached among relevant government departments on the "area traffic management measures" and "traffic diversion schedules" during construction and subsequent management/maintenance stages of the Project. The final Report on Traffic Review and Traffic Management Plan will then serve as guidelines for making detailed proposals by the Director's Representative and contractors in the construction and subsequent management/maintenance stages.
- 1.2.2 **Figure 1.1** shows the general layout of the proposed Project works.

1.3 Structure of the Report

1.3.1 The report is organized as follows:

- **Section 1** provides a description of the Project scope, purpose of this report, and includes a description of the work programme for the Project;
- Section 2 The Project, presents the proposed facilities;
- **Section 3** Existing Traffic Context, describes the existing traffic condition in the vicinity;
- Section 4 Traffic Forecast, explains the methodology of traffic forecasting;
- Section 5 Construction Traffic Impact Assessment (CTIA), presents the results
 of the CTIA at the adopted design years, and recommends any improvement
 measures to alleviate the foreseeable traffic problem, if considered necessary;
- Section 6 Operation Traffic Impact Assessment, presents the result of TIA at the adopted design years, and recommends any improvement measures to alleviate the foreseeable traffic problem, if considered necessary
- Section 7 Pedestrian Traffic Enhancement Measures, present the proposed signalized pedestrian crossings across Wai Fat Road, Kwun Tong By-pass slip roads, proposed permanent removal of footbridge ramp of Footbridge KF90 and provision of a landscape walkway FB06; and
- **Section 8** Summary and Conclusion, summarizes the findings of the study and presents the conclusion accordingly.

2. THE PROJECT

2.1 Site Location

- 2.1.1 The Project, transforming King Yip Street nullah into Tsui Ping River, and the proposed study area of the Report are indicated in Figure 1.1.
- 2.1.2 The concerned section of King Yip Street nullah is located between Kai Lim Road and the seafront adjacent to Kwun Tong Preliminary Treatment Works (KTPTW).

2.2 **Construction Schedule**

- 2.2.1 The construction works are planned to be commenced in the fourth quarter of 2019 and for completion in stages by 2023. Therefore, year 2023 would be adopted for assessment during construction as a conservative approach.
- 2.2.2 The proposed construction works and programme are listed in below,

Section between Kwun Tong Road and Kai Lim Road (namely Zone A)

- Construction of new ramp for footbridge (Figure 7.5 refers);
- Removal of existing ramp and foundations of footbridge KF90; and
- Revitalization of the existing nullah, stabilization works of existing nullah walls & enhancement works for improving walkability and connectivity.

Section between Shing Yip Street and Kwun Tong Road (namely Zone B)

Revitalization of the existing nullah, stabilization works of existing nullah walls & enhancement works for improving walkability and connectivity.

Section between Wai Yip Street and Shing Yip Street (namely Zone C)

- Revitalization of the existing nullah, water supplement system and seawater circulation system, stabilization works of existing nullah walls, Enhancement works for improving walkability and connectivity & landscaping, environmental and ecological enhancement and amenity works;
- Construction of proposed signalized pedestrian crossing across Wai Fat Road (Figure 7.1 refers);
- Construction of proposed cautionary crossings at King Yip Street (Figure 7.6 & Figure 7.7 refers); and
- Construction of disabled parking space at Hing Yip Street (Figure 7.6 refers).

Section between Seafront and Wai Yip Street (namely Zone D)

- Revitalization of the existing nullah, stabilization works of existing nullah walls, enhancement works for improving walkability and connectivity & landscaping, environmental and ecological enhancement and amenity works; and
- Construction of proposed signalized pedestrian crossing across Kwun Tong Bypass slip roads. (Figure 7.3 refers)

3. EXISTING TRAFFIC CONTEXT

3.1 Existing Road Network

Zone A

- 3.1.1 The section of King Yip Street nullah at Zone A bounded by Tsui Ping Road at the north, Kai Lim Road at the east, Kwun Tong Swimming Pool at the south and Kwun Tong Road at the west.
- 3.1.2 The existing Kwun Tong Road between Kwun Tong Road Roundabout and Tsui Ping Road is a dual four lane primary distributor. Kwun Tong Road runs in east-west direction providing linkage to Hoi Yuen Road and Lai Yip Street leading to Kwun Tong Business Area, Tsui Ping Road leading to residential areas and Lei Yue Mun Road leading to Yau Tong.
- 3.1.3 Tsui Ping Road is a single two-lane district distributor located in between Kwun Tong Road and Hip Wo Street.

Zone B

- 3.1.4 The section of King Yip Street nullah at Zone B bounded by Kwun Tong Road at the east, Shing Yip Street at the west with about 4.0 m wide walkways alongside.
- 3.1.5 Shing Yip Street is a one way three lanes local road in between of King Yip Street and Hoi Yuen Road. It not only serves as access to Kwun Tong Business Area but also provides spaces for loading / unloading activities to adjacent commercial / industrial buildings. Currently stopping restriction 7am 7pm is implemented. Besides, the section of Shing Yip Street between Wai Fat Road and King Yip Street is a two-way carriageway.

Zones C & D

- 3.1.6 The section of King Yip Street nullah at Zone C bounded by King Yip Street at the north, Shing Yip Street to the east, Wai Fat Road at the south and Wai Yip Street at the west.
- 3.1.7 King Yip Street is a one-way two-lane carriageway connecting Hung To Road, Hing Yip Street and Shing Yip Street.
- 3.1.8 Hung To Road and Hing Yip Street are one-way carriageway with stopping restriction 7am 7pm is implemented. Loading/ unloading bay is currently provided at both sides along Hung To Road and south-western side of Hing Yip Street.
- 3.1.9 Wai Fat Road is a 7.3 m wide dual carriageway connecting Shing Yip Street and Cha Kwo Ling Road on the east and Kwun Tong bypass and Wai Yip Street on its west underneath Kwun Tong By-pass.
- 3.1.10 Wai Yip Street is a dual two lane local carriageway connecting Kwun Tong Business Area and Kowloon Bay Business Area. It also connects How Ming Street leading to Kwun Tong Promenade.

3.2 Vehicular and Pedestrian Traffic Survey

- 3.2.1 A manual classified pedestrian traffic count survey was conducted on a normal weekday, 16 March 2018 (Friday) during the morning, noon and evening peak hour periods from 07:30 to 09:30, from 11:30 to 14:00 and from 17:00 to 19:00 respectively within the vicinity.
- 3.2.2 The location plan for pedestrian assessment is shown in **Table 3.1** and the location index is illustrated in **Figure 3.1**.

Table 3.1: Location Plan for Pedestrian Assessment

Index (1)	Location
Zone A	
P1	Tsui Ping Road southern walkway adjacent to carriageway
P2	Tsui Ping Road southern walkway between nullah and Kwun Tong Swimming Pool
P3	Tsui Ping Road southern walkway between carriageway and footbridge ramp
P4	Tsui Ping Road southern walkway between footbridge ramp and Kwun Tong Swimming Pool
P18	Cross-nullah walkway adjacent to footbridge ramp
Zone B	
P5	King Yip Lane northern walkway
P6	King Yip Lane southern walkway
Zone C	
P7	King Yip Street northern walkway outside King Yip Factory Building
P8	King Yip Street northern walkway outside King Palace Plaza
P9	King Yip Street southern walkway adjacent to King Yip Street nullah
P10	King Yip Street northern walkway outside Manulife Financial Centre Tower B
P11	Shing Yip Street eastern walkway
P12	Shing Yip Street western walkway
P13	Hing Yip Street eastern walkway
P14	Hing Yip Street western walkway
P15	Hung To Road eastern walkway
P16	Hung To Road western walkway
Zone D	
P17	Wai Yip Street western walkway
P19	Wai Yip Street eastern walkway
Remarks:	(1) Refer to Figure 3.1 .

Remarks: (1) Refer to Figure 3.1.

- **S**
- 3.2.3 Based on pedestrian traffic count survey, the morning, noon and evening peak hours were identified as 08:30 09:30, 13:00 14:00 and 18:00 19:00 respectively.
- 3.2.4 A manual classified vehicular traffic count survey was conducted on a normal weekday, 20 March 2018 (Tuesday) during the morning and evening peak hour periods from 07:30 to 09:30 and from 17:00 to 19:00 respectively within the vicinity.
- 3.2.5 The location of the critical junctions within the study area are listed in **Table 3.2** and shown in **Figure 3.1**.
- 3.2.6 The year 2018 existing traffic flows are presented in **Figure 3.2**.

Table 3.2: List of Critical Junctions and Road Sections

Index (1)	Location	Туре
J1	Tsui Ping Road / Kai Lim Road	Signalized Junction
J2	Kwun Tong Road / Tsui Ping Road	Signalized Junction
J3	King Yip Street / Shing Yip Street	Signalized Junction
J4	Wai Fat Road / Shing Yip Street / Cha Kwo Ling Road	Signalized Junction
J5	Wai Fat Road / Wai Yip Street	Signalized Junction
J6	Lei Yue Mun Road / Cha Kwo Ling Road	Signalized Junction
J7	King Yip Street / Hung To Road	Priority Junction
J8	King Yip Street / Hing Yip Street	Priority Junction
L1	Wai Yip Street	Road Section
L2	King Yip Street	Road Section
L3	Wai Fat Road	Road Section
L4	Kwun Tong Road	Road Section
L5	Tsui Ping Road	Road Section

Remarks: (1) Refer to Figure 3.1.

3.2.7 Based on vehicular traffic count survey, the morning and evening peak hours were identified as 08:30 - 09:30 and 17:15 - 18:15 respectively.

3.3 Pedestrian Walkway Assessment

- 3.3.1 The operation performances of the critical pedestrian walkways were assessed and the results are expressed in terms of Level Of Service (LOS).
- 3.3.2 According to TPDM, LOS "C" is considered an optimal level of service in the **Highway Capacity Manual (HCM)**. In general, LOS "C" is desirable for most design at streets with dominant 'living' pedestrian activities. However, TPDM also stipulates that the capacity for level section of footbridge and subway is 50 ped/min/m which is approximately equivalent to LOS "D" in the HCM. Therefore, it can be considered that a pedestrian walkway operating at LOS "A" to "D" is still within capacity. The definition of LOS is given in **Table 3.3**.

Table 3.3: Pedestrian Walkway Level of Service (LOS)

LOS	Flow Rate (ppm/m)	Description
А	≤ 16	Pedestrians move in desired paths without altering their movements in response to other pedestrians. Walking speeds are freely selected, and conflicts between pedestrians are unlikely.
В	16 – 23	There is sufficient area for pedestrians to select walking speeds freely, to bypass other pedestrians, and to avoid crossing conflicts. At this level, pedestrians begin to be aware of other pedestrians, and to respond to their presence when selecting a walking path.
С	23 – 33	Space is sufficient for normal walking speeds, and for bypassing other pedestrians in primarily unidirectional streams. Reverse-direction or crossing movements can cause minor conflicts, and speeds and flow rate are somewhat lower.
D	33 – 49	Freedom to select individual walkway speeds and to bypass other pedestrians is restricted. Crossing or reserve-flow movements face a high probability of conflict, requiring frequent changes in speed and position. The LOS provides reasonably fluid flow, but friction and interaction between pedestrians is likely.
E	49 – 75	Virtually all pedestrians restrict their normal walking speed, frequently adjusting their gait. At the lower range, forward movement is possible only by shuffling. Space is not sufficient for passing slower pedestrians. Crossor reverse-flow movements are possible only with extreme difficulties. Design volumes approach the limit of walkway capacity, with stoppages and interruptions to flow.
F	> 75	All walking speeds are severely restricted, and forward progress is made only by shuffling. There is frequent, unavoidable contact with other pedestrians. Cross- and reverse-flow movements are virtually impossible. Flow is sporadic and unstable. Space is more characteristic of queued pedestrians than of moving pedestrian streams.

3.3.3 To derive the pedestrian flow per 5-minute, a peak factor of 1.2 was applied to the peak hour pedestrian flow to reflect the peak 5-minute in the peak hour. For assessment purpose, the maximum pedestrian demands are adopted to assess the operational performance of the pedestrian walkways.

3.3.4 The operation performances of existing walkways are summarized in Table 3.4.

Table 3.4: Existing Operational Assessment for Pedestrian Walkways

			Pedes	strian De (pph) ⁽³⁾	mand	Flow F	Rate (ppn	n/m) ⁽⁴⁾	L	.os	5)	V/	C Ratio	(6)
Index (1)	Clear Width (m)	Effective Width (m) (2)	АМ	Noon	PM	АМ	Noon	PM	AM	Noon	PM	AM	Noon	0.29 0.04 0.09 0.01 0.18 0.11 0.02 0.30 0.12 0.01 0.09 0.55 0.21 0.33 0.24 0.16 0.23 0.003 0.09
P1 ⁽⁷⁾	3.5	2.0	1,135	920	1,465	11.4	9.2	14.7	Α	Α	Α	0.23	0.18	0.29
P2	3.5	2.5	315	175	235	2.5	1.4	1.9	Α	Α	Α	0.05	0.03	0.04
P3 (7)	2.0	0.5	75	215	110	3.0	8.6	4.4	Α	Α	Α	0.06	0.17	0.09
P4	4.0	3.0	95	45	75	0.6	0.3	0.5	Α	Α	Α	0.01	0.01	0.01
P18	3.5	2.5	1,665	955	1,135	13.3	7.6	9.1	Α	Α	Α	0.27	0.15	0.18
P5	4.0	3.0	900	770	795	6.0	5.1	5.3	Α	Α	Α	0.12	0.10	0.11
P6	4.0	3.0	355	130	155	2.4	0.9	1.0	Α	Α	Α	0.05	0.02	0.02
P7 ⁽⁷⁾	3.6	2.1	1,370	1,465	1,560	13.0	14.0	14.9	Α	Α	Α	0.26	0.28	0.30
P8 ⁽⁷⁾	5.0	3.5	640	1,105	1,015	3.7	6.3	5.8	Α	Α	Α	0.07	0.13	0.12
P9	3.0	2.0	185	25	25	1.9	0.3	0.3	Α	Α	Α	0.04	0.01	0.01
P10 (7)	3.6	2.1	235	430	460	2.2	4.1	4.4	Α	Α	Α	0.04	0.08	0.09
P11	2.5	1.5	2,630	1,960	2,050	35.1	26.1	27.3	D	С	С	0.70	0.52	0.55
P12	3.6	2.6	1,500	1,750	1,340	11.5	13.5	10.3	Α	Α	Α	0.23	0.27	0.21
P13	2.2	1.2	1,170	940	980	19.5	15.7	16.3	В	Α	В	0.39	0.31	0.33
P14	2.2	1.2	1,010	910	710	16.8	15.2	11.8	В	Α	Α	0.34	0.30	0.24
P15	3.0	2.0	980	1,260	780	9.8	12.6	7.8	Α	Α	Α	0.20	0.25	0.16
P16	3.0	2.0	2,310	2,630	1,170	23.1	26.3	11.7	С	С	Α	0.46	0.53	0.23
P17	4.5	3.5	25	10	25	0.1	0.1	0.1	Α	Α	Α	0.003	0.001	0.003
P19	4.1	3.1	485	610	665	3.1	3.9	4.3	Α	Α	Α	0.06	0.08	0.09

- Refer to Figure 3.1.
- Effective Width = Clear Width Dead Width (0.5 m at each side of walkway).
- (2) (3) All figures are round up to nearest 5.
- (4) Flow Rate = Pedestrian Demand / 60 min x 1.2 / Effective Width.
- *(*5*)* Refer to Table 3.3.
- V/C Ratio = Flow Rate / Capacity (refer to TPDM Vol. 2 Ch. 3 Table 3.7.7.1 for capacity of walkway of 50ppm/m or ramp/ staircase of 40ppm/m).
- Effective Width is further reduced by 0.5 m accounting for obstruction of railings or bus stop facilities.

3.3.5 From **Table 3.4**, it shows that all of the existing walkways were operating at LOS "D" or better in year 2018.

3.4 Junction capacity Performance

3.4.1 A junction capacity assessment was carried out to reveal the existing performance of the critical junctions. The assessment results are tabulated in **Table 3.5** and correlated calculation sheets are attached in **Appendix A**.

Table 3.5: Existing Junction Performance

Index	Junctions	Reserved Ca Design Flow ((DI	Capacity Ratio
		AM	PM
J1	Tsui Ping Road / Kai Lim Road	38%	24%
J2	Kwun Tong Road / Tsui Ping Road	39%	26%
J3	King Yip Street / Shing Yip Street	>100%	>100%
J4	Wai Fat Road / Shing Yip Street / Cha Kwo Ling Road	55%	34%
J5	Wai Fat Road / Wai Yip Street	3%	4%
J6	Lei Yue Mun Road / Cha Kwo Ling Road	32%	42%
J7	King Yip Street / Hung To Road	0.47	0.76
J8	King Yip Street / Hing Yip Street	0.58	0.89

Remarks:

(1) Refer to **Figure 3.1**.

3.4.2 As shown in **Table 3.5**, it can be seen that most of the junctions assessed were found to operate within capacity (i.e. RC ≥ 10% for signal junctions & DFC ≤ 0.85 for priority junction) in year 2018 except for junction of Wai Fat Road/ Wai Yip Street (J5) and junction of King Yip Street / Hing Yip Street (J8) would operate at marginal performance.

3.5 Link Capacity Assessment

- 3.5.1 Capacity of critical road sections had been assessed for the purpose of assessment.
- 3.5.2 The existing link capacities of the road sections, assessed with reference to Transport Planning and Design Manual (TPDM) Volume 2, Chapter 2.4, Table 2.4.1.1 and adopted appropriate passenger car unit (p.c.u.). factor to derive the adopted capacity for assessment.
- 3.5.3 General performance of carriageways is measured by Volume to Capacity (V/C) Ratios. Normally a V/C ratio below 1.0 is considered desirable. A V/C ratio between 1.0 and 1.2 would indicate a manageable degree of congestion. A V/C ratio greater than 1.2 indicates the onset more serious congestion.

3.5.4 The operation performances of the critical road section were assessed and the results expressed in term of V/C ratio are summarized in **Table 3.6**.

Table 3.6: Existing Link Capacity

Index (1)	Road Section	Direction	Carriageway Width (m)	Capacity (pcu/hr) (2)	Flo	Peak Hourly Flow (pcu/hr)		V/C Ratio		
			` ,	,	AM	PM	AM	PM		
1.1	Wai Yip Street	Northbound	6.6	2,280	1,610	1,080	0.71	0.47		
L1	vvai rip Street	Southbound	7.0	2,280	1,680	1,840	0.74	0.81		
L2	King Yip Street	Eastbound	8.0	3,120	1,160	1,490	0.37	0.48		
1.2	Wei Fet Dood	Eastbound	7.3	2,400	150	260	0.06	0.11		
L3	Wai Fat Road	Westbound	7.3	2,400	850	1,160	0.35	0.48		
L4	Kwun Tong Road	Northbound	12.7	5,040	3,990	3,710	0.79	0.74		
1.5	Toui Ding Dood	Eastbound	4.5	1,440	870	960	0.60	0.67		
L5	Tsui Ping Road	Westbound	6.7	1,440	540	470	0.38	0.33		

Remarks:

3.5.5 As shown in **Table 3.6**, the existing road section would operate desirably with V/C ratio <1.00.

⁽¹⁾ Refer to Figure 3.1.

⁽²⁾ The capacity is referring with TPDM Vol. Ch 2.4, Table 2.4.1.1 and adopted appropriate p.c.u. factor to derive the adopted capacity for assessment.

4. TRAFFIC FORECAST

4.1 Methodology

4.1.1 The construction works of the Project is anticipated to be commenced in the fourth quarter of 2019 and completed in stages by year 2023. Years 2023 (construction and completion year) and 2028 (5 years after completion) were adopted as the design years for assessment purpose.

Background Vehicular Traffic

- 4.1.2 The background traffic forecasts for the design years 2023 and 2028 were projected by applying a growth rate to the observed traffic flows obtained from recent traffic survey. The adopted growth rate was determined by making reference to the Territory Population and Employment Data Matrices (TPEDM) planning data published by Planning Department (PlanD) and the historical traffic data from Annual Traffic Census (ATC) reports published by Transport Department (TD) of the Kwun Tong Area.
- 4.1.3 The vehicular traffic volume generated/ attracted by other planned/ committed developments in the vicinity were estimated and assigned onto the surrounding road network to produce the reference traffic forecasts at design years.

Background Pedestrian Traffic

4.1.4 Similarly, the background pedestrian forecasts for the design years 2023 and 2028 were projected by applying a growth rate to the observed pedestrian flows obtained from recent traffic survey. The adopted growth rate was determined by making reference to the TPEDM planning data published by PlanD and the historical traffic data from ATC reports published by TD of the in Kwun Tong Area.

4.2 Growth Factor Determination

Territory Population and Employment Data Matrices (TPEDM)

4.2.1 The growth factor was determined based on the population and employment growth of the Planning Data Districts (PDD) from the open 2014-based TPEDM available on PlanD's website, as summarized in **Table 4.1**.

Table 4.1: Territory Population and Employment Data Matrices (TPEDM)
Planning Data for Selected Zone

		Popul	ation		Employment				
PDD Zone	2014	2021	2026	Growth Rate (p.a.)	2014	2021	2026	Growth Rate (p.a.)	
Kwun Tong	645,400	677,200	718,750	0.93%	386,000	419,450	433,800	0.94%	

4.2.2 As shown in the above table, the average annual growth rate determined from TPEDM is +0.93% and +0.94% per annum from year 2014 to year 2026 regarding population and employment data respectively.

Annual Traffic Census

4.2.3 An additional reference was made to the historical traffic growth trend in the area from ATC reports published by TD. The traffic count stations located in the vicinity of the Development were selected. Records of traffic flows were extracted from ATC and summarized in **Table 4.2**.

Table 4.2: Historical Annual Traffic Census (ATC) Data for Selected Roads

Stn			An	nual Avera	ge Daily Tra	affic (A.A.D	.T.)		Growth
No.	Road Name	2011	2012	2013	2014	2015	2016	2017	Rate (p.a.)
3833	Kwun Tong Rd	80,060	78,970	80,550	80,210	80,540	86,480	88,520	
3643	Kwun Tong Rd	33,530	33,540	33,250	33,110	31,170	30,870	31,110	
3834	Kwun Tong Rd	84,220	86,530	85,780	85,420	85,770	75,500	78,930	
3279	Wai Yip St	29,320	29,580	28,070	28,980	29,930	29,530	29,350	1.00%
3023	Kwun Tong Bypass <k77></k77>	93,040	92,940	97,200	99,000	97,350	96,730	97,360	
	Total	320,170	321,560	324,850	326,720	324,760	319,110	325,270	

Remarks: The italic A.A.D.T. figures are estimated values based on the ATC Reports. Those estimated figures are excluded in calculating the weighted average annual growth rate.

4.2.4 As shown in **Table 4.2**, the weighted average annual growth rate determined from ATC is about +1.00% per annum over the seven years from 2011 to 2017.

Adopted Growth Rate

- 4.2.5 As the derived growth rates from TPEDM are less than +1.00% per annum, a nominal growth rate of **+ 1.00%** per annum, that derived from ATC was adopted for assessment to produce the background traffic flows from the year 2018 observed traffic flows up to design year 2028.
- 4.2.6 The nominal growth rate (i.e. **+ 1.00**% per annum) that derived from ATC was also adopted for assessment to produce the background pedestrian trips from the year 2018 observed pedestrian trips up to design year 2028.

4.3 Other Planned Developments

Vehicular Traffic Forecast

- 4.3.1 Major planned/ approved developments in the vicinity of the Project were taken into account for the years 2023 and 2028 reference traffic flows.
- 4.3.2 The development schedule of major planned/ approved developments in the vicinity of the Project are summarized in **Table 4.3**.
- 4.3.3 The traffic generation from the other planned developments are making reference to MPC Paper No. 19/14 for information relating to Ex-Cha Kwo Ling Kaolin Mine Site, TIA report for King Yip Street Site Development and TIA report for Proposed Vocational Training Council (VTC) Complex at Government Land, Wai Yip Street, Kwun Tong (New Indicative Scheme). The adopted trip rates for the aforementioned studies under the Project are listed in **Table 4.4** for reference.

Table 4.3: Development Schedule of Major Planned/ Approved Developments in the Vicinity

Developments (1)	No. of Flats / GFA (m²)	Development Component	Tentative Completion Year
Ex-Cha Kwo Ling Kaolin Mine Site (1)	2,000 Flats	Residential	2021
King Yip Street Site Development (2)	120,528 m ²	Commercial Development	2023
Vocational Training	165,710 m ²	Campus	2022
Council (VTC) (3)	14,290 m ²	Authentic Training Facilities	2023

- (1) Residential Units reference to the latest MPC Paper No. 19/14 for information relating to Ex-Cha Kwo Ling Kaolin Mine Site.
- (2) Reference to Technical Report 1: TIA for King Yip Street Site Development under Pedestrian Environment Improvement Scheme for Transformation of Kwun Tong Business Area Feasibility Study (EKEO study) dated January 2015.
- (3) Reference to the Traffic Impact Assessment Report for Proposed Vocational Training Council (VTC) Campus Development at Government Land, Wai Yip Street, Kwun Tong (New Indicative Scheme) dated August 2017.

Table 4.4: Adopted Trip Rates for the Committed / Planned Development

		Trip Rates (pcu/hr/flat) / (pcu/hr/100m²) / (pcu/hr/space)							
Development	Component	Α	M	PM					
		Generation	Attraction	Generation	Attraction				
	Commercial	0.202	0.223	0.335	0.347				
King Yip Street Site Development	Public Car Park – Private Car	0.124	0.207	0.227	0.171				
Βονοιοριποτίτ	Public Car Park – Light Good Vehicle	0.404	0.087	0.163	0.471				
Ex-Cha Kwo Ling Kaolin Mine Site	Residential	0.0718	0.0425	0.0286	0.037				
Vecational Training	Complex	0.1392	0.7425	0.8553	0.1392				
Vocational Training Council (VTC)	Authentic Training Facilities	0.1329	0.1457	0.1290	0.1546				

Pedestrian Trips Forecast

4.3.4 Similarly, major planned/ approved developments in the vicinity of the Project were taken into account for the years 2023 and 2028 reference pedestrian trips. As stated in the TIA report for Proposed Vocational Training Council (VTC) Complex at Government Land, Wai Yip Street, Kwun Tong (New Indicative Scheme), the pedestrian trips generation to/from Kwun Tong MTR Station are listed in Table 4.5 for reference.

Table 4.5: Adopted Pedestrian Trips Generation for the Committed / Planned **Developments**

		Pedestriar	Trips to/from	Kwun Tong M	TR Station	
Development	Component	Α	M	P	M	
		Generation	Attraction	Generation	Attraction	
Vocational Training Council (VTC)	Authentic Training Facilities	4	103	110	11	

Reference from the TIA report for Proposed VTC Complex at Government Land, Wai Yip Street, Kwun Remarks: Tong (New Indicative Scheme)

4.4 Reference Vehicular Traffic and Pedestrian Trips Forecast

- 4.4.1 The future traffic flows generated by other planned/ approved developments in the vicinity of the Project were assigned onto the road network and superimposed onto the background traffic flows to produce the reference traffic flows in the design years 2023 and 2028.
- 4.4.2 The future pedestrian trips generated by other planned/ approved developments in the vicinity of the Project were assigned onto the road network and superimposed onto the background pedestrian trips to produce the reference pedestrian trips in the design years 2023 and 2028.

4.5 Construction Traffic Generation

4.5.1 According to the construction vehicles generated under construction of Kai Tak River, about 47 nos. of construction vehicle trips were generated daily (from 08:00 – 18:00 hours) at peak. For assessment purpose, it is assumed that the Project would generate about 20 pcu/hr for each zone during construction period. It is considered that the additional traffic impact would be insignificant. The anticipated construction traffic routings are shown in **Figure 4.1**.

4.6 Pedestrian Trips Generation from the Project

4.6.1 The visitor trip rates of the Project were derived from the ratio of the surveyed peak hour visitor demand of Laguna Park, with site area about 10,840 m², adjacent to existing King Yip Street nullah as summarized in **Table 4.5**.

Table 4.6: Peak Hour Visitor Trip Rates for Laguna Park

Location	Site Area (m²)		Peak Hour I/hr)	Visitor Trip Rates (ped/hr/m2)				
		In	Out	In	Out			
Laguna Park	10,840	331	781	0.0305	0.0720			

- 4.6.2 Based on the visitor trip rates of the existing Laguna Park as listed in **Table 4.6** the estimated no. of visitors at each zone as listed in below,
 - Zone A with site area about 1,950 m² 200 visitors/hr,
 - Zone B with site area about 3,060 m² 300 visitors/hr,
 - Zone C with site area about 5,420 m² 600 visitors/hr, and
 - Zone D with site area about 3,680 m² 400 visitors/hr.

4.7 Design Traffic Flows during Construction Stage

4.7.1 Construction traffic generated by the Project were assigned onto the road network and superimposed onto the year 2023 reference traffic flows to produce the year 2023 construction design traffic flows. The year 2023 reference and construction design traffic flows are shown in **Figures 4.2** and **4.3** respectively.

4.8 Design Traffic Flows during Operation Stage

4.8.1 Due to the nature of the Project, traffic generation due to management/ maintenance of sewerage/ drainage works is anticipated to be minimal. It is anticipated that the additional traffic flow due to the Project in the operational phase would be negligible. Therefore, for the purpose of traffic assessment, it was assumed that the years 2023 and 2028 design traffic flows after the completion of the Project would be the same as the years 2023 and 2028 reference traffic flows.

4.9 Design Pedestrian Trips during Construction Stage

4.9.1 It is anticipated that there is no substantial increase of pedestrian trip before completion of the Project. As such, the year 2023 construction design pedestrian trips before the Project would be the same as the year 2023 reference pedestrian trips.

4.10 Design Pedestrian Trips during Operation Stage

4.10.1 The forecast visitor generation during the completion of the Project would be superimposed onto the years 2023 and 2028 reference pedestrian forecasts to create the design year forecasts for assessment at the design years. The design years 2023 and 2028 design pedestrian trips are shown in **Table 6.2** and **Table 6.3** respectively.

5. CONSTRUCTION TRAFFIC IMPACT ASSESSMENT

- 5.1 Temporary Traffic Management Scheme (TTMS)
- 5.1.1 The detail arrangements of TTMS in Zones A to D are shown in **Figures 5.1** to **5.9**.
- 5.1.2 TTMS proposed for construction purposes will comply with the requirement as stipulated in the TPDM published by TD and the "Code of Practice for Lighting and Signing and Guarding of Road Works" published by Highways Department (HyD).
- 5.1.3 For locations where proposed works affecting pedestrian facilities, a minimum of 1.5 m wide walkway should be maintained. Decking over pedestrian crossing within proposed works area will be provided where necessary to maintain adequate width of pedestrian crossing subject to the construction works nature.
- 5.1.4 Accessibility to premises, public transport facilities and pedestrian facilities should be maintained.
- 5.1.5 In anticipating the involvement of extensive road works, the following requirements shall be observed throughout the construction period as far as reasonably practicable;
 - a) A thoroughfare of 3.5 m wide shall be maintained for passage of fire appliances at all times;
 - b) Adequate space (6 m wide minimum) shall be provided in front of the major façade of the building for the free aerial rescue and firefighting operation. If such requirement cannot be achieved, the construction works shall be carried out by sections of not more than 20 m in length;
 - c) Any road opening affecting the EVA should be decked over, capable of withstanding 30-tonne loading for emergency traffic;
 - d) An inner turning radius of 6.1 m and an outer turning radius of 11 m should be maintained;
 - e) For roads other than expressways and with speed limit of 70 km/h or below, a minimum of 0.5 m lateral safety clearance should be maintained between the works area and any part of the trafficked carriageway;
 - For roads other than expressways and with speed limit of 70 km/h or below a minimum of 10 m in length longitudinal safety clearance zone should be provided; and
 - g) Any excavation/construction works should under no circumstances cause any obstruction to the nearby fire hydrants and ground valves. Should any fire hydrant be affected, comments from Fire Services Department (FSD) should be sought.
- 5.1.6 All related works will not clash with other work fronts in the vicinity. Trial runs will be conducted, if considered necessary, for individual TTM schemes to test the prevalent traffic condition before implementation with the aim to minimize the traffic impact to both pedestrians and motorists during construction.

5.1.7 The proposed TTM schemes will be submitted to TD and Hong Kong Police Force (HKPF) / Traffic Management and Liaison Group (TMLG) for endorsement as appropriate at construction stage by contractor.

Zone A - Figures 5.1 - 5.4

- 5.1.8 Stage 1 Construction of the re-provisioned footbridge ramp (**Figure 5.1**)
 - For construction of the re-provisioned footbridge ramp, the open space adjacent to Kwun Tong Swimming Pool would be occupied and fenced off for use as works area.
 - A minimum 2.0 m wide walkway would be maintained between the existing nullah and works area.
 - The existing footbridge, including staircase and lift to be constructed by CEDD, would be maintained.
 - The proposed TTM scheme would be implemented 24 hours a day and is shown in **Figure 5.1**.
 - The nearside lane of a section of Tsui Ping Road would be temporarily closed to all vehicular traffic for loading/unloading of construction plants and materials on a need basis.
 - The TTM scheme for loading / unloading is shown in **Figure 5.4** (upper part).
- 5.1.9 <u>Stage 2 Removal of the existing footbridge ramp and Construction of Tsui Ping</u> <u>River north-western side (**Figure 5.2**)</u>
 - For construction of Tsui Ping River (north-western side) and removal of the
 existing footbridge ramp, the works area will occupy the existing King Yip Street
 nullah, the north-western walkway along Tsui Ping Road adjacent to the existing
 footbridge ramp and a portion of north-western walkway along Tsui Ping Road
 between Fuk Tong Road and Kai Lim Road.
 - The section of northern-west walkway along Tsui Ping Road adjacent to the existing footbridge ramp would be temporarily closed to facilitate the construction works.
 - Pedestrians would be diverted to use the walkway between King Yip Street nullah and Kwun Tong Swimming Pool temporarily.
 - Besides, a minimum of 2.0 m wide walkway would be maintained at the affected walkway sections, including the north-western walkway along Tsui Ping Road between Fuk Tong Road and Kai Lim Road and the existing cross-nullah walkway near Kwun Tong Swimming Pool.
 - The existing bus stop at Tsui Ping Road westbound would be maintained at all times during the implementation of the TTM scheme.
 - Access to the existing footbridge, including the staircase and lift to be constructed by CEDD, would also be maintained.

- The proposed TTM scheme would be implemented 24 hours a day and is shown in Figure 5.2.
- Besides, the nearside lane of a section of Tsui Ping Road would be temporarily closed to all vehicular traffic for loading/unloading of construction plants and materials on a need basis as shown in Figure 5.4 (upper part).
- In addition, similar TTM scheme would be implemented for removal of the footbridge ramp during night time between 23:00 and 05:30 hours for a few nights tentatively. Pedestrians would be diverted to use the walkway between King Yip Street nullah and Kwun Tong Swimming Pool.
- The proposed TTM scheme for removal of footbridge ramp is shown in Figure 5.4 (lower part).

5.1.10 Stage 3 - Construction of Tsui Ping River south-eastern side (**Figure 5.3**)

- For construction of Tsui Ping River (south-eastern side) and the proposed engineered wetland, the works area will occupy the existing King Yip Street nullah and a portion of walkway between King Yip Street nullah and Kwun Tong Swimming Pool adjacent to the re-provisioned footbridge ramp. Besides, the open space at Kwun Tong Swimming Pool adjacent to Kai Lim Road will also be occupied for construction of the engineered wetland.
- The section of walkway between King Yip Street nullah and Kwun Tong Swimming Pool adjacent to Kai Lim Road would be temporarily closed to facilitate the construction works.
- Pedestrians would be diverted to use the north-western side walkway adjacent to Tsui Ping Road between Fuk Tong Road and Kai Lim Road temporarily.
- Besides, a minimum of 2.0 m wide walkway would be maintained at the affected walkway sections, including walkways between King Yip Street nullah and Kwun Tong Swimming Pool adjacent to the re-provisioned footbridge ramp and the existing cross-nullah walkway near Kwun Tong Swimming Pool.
- The existing bus stop at Tsui Ping Road westbound would be maintained at all times during the implementation of the TTM scheme.
- Access to the existing footbridge, including staircase and lift to be constructed by CEDD, would be maintained.
- The proposed TTM scheme would be implemented 24 hours a day and is shown in Figure 5.3.
- Besides, the nearside lane of a section of Tsui Ping Road would be temporarily closed to all vehicular traffic for loading/unloading of construction plant and materials on a need basis as shown in Figure 5.4 (upper part).

Zone B – Figures 5.5 – 5.7

5.1.11 Construction works for revitalization of Tsui Ping River

- The works area will be located at the walkways alongside of existing nullah at King Yip Lane.
- A minimum 2.0m wide walkway would be maintained alongside of proposed works area.
- Access to the existing footbridge would be maintained at all times.
- The proposed TTM scheme would be implemented 24 hours a day for construction of the north-western and south-eastern sides of the nullah. The proposed TTM schemes in Zone B for construction of the north-western and south-eastern sides of Tsui Ping River are shown in Figures 5.5 and 5.6 respectively.
- The nearside lane of a section of Shing Yip Street would be temporarily closed to all vehicular traffic between 10:00 and 16:00 hours for loading/unloading of construction plants and materials on a need basis. The TTM scheme for loading/unloading and swept path analysis are shown in **Figure 5.7**.
- Based on the swept path analysis shown in Figure 5.7, the result shows that there
 is sufficient manoeuvring space for 12.8m long vehicle turning from King Yip
 Street to Shing Yip Street southbound even with the proposed TTM scheme for
 loading/unloading implemented.

Zone C – Figures 5.8, 5.8.1 and 5.8.2

5.1.12 Construction of working platform on existing nullah & Construction works of Tsui Ping River (Figure 5.8)

- The works area will occupy the southern walkway along King Yip Street and the section of King Yip nullah at Zone C temporarily.
- Pedestrians would be temporary diverted to the opposite walkway using the signalized pedestrian crossing at junction of King Yip Street / Shing Yip Street and cautionary crossing at junction of King Yip Street near Wai Yip Street across King Yip Street.
- The existing bus stops along King Yip Street would be maintained at all times during the implementation of the TTM scheme.
- The proposed TTM scheme would be implemented 24 hours a day as shown in Figure 5.8.

5.1.13 Pedestrian path enhancement works at Hung To Road, Hing Yip Street and Shing Yip Street

- Heavy pedestrian demand was observed during AM, NOON, PM peak periods at Hung To Road, Hing Yip Street and Shing Yip Street currently.
- It is proposed that a minimum of 1.5m 2.0m wide walkway and accessibility to premises should be maintained at all times during the enhancement works.
- The TTM schemes of the enhancement works would be implemented during offpeak period and decked over during peak periods to minimize the impact on pedestrians.
- The pedestrian path enhancement works are to improve the walking condition of the existing walkways and would be implemented on a section-by-section basis.
- Each section of the proposed works area should be kept to as minimal as possible in order to minimize the impact to the pedestrians in the vicinity.
- It is also suggested that partial closures of walkways should be at least be 50m apart each time to minimize the disturbance to pedestrians.

5.1.14 Construction of proposed signalized pedestrian crossing at Wai Fat Road (Figures 5.8.1 & 5.8.2)

- The construction works for the proposed signalized pedestrian crossing at Wai
 Fat Road would be carried out in stages on a lane-by-lane basis while maintaining
 one traffic lane adjacent to the works area.
- The TTM scheme of the construction of the proposed signalized pedestrian crossing at Wai Fat Road would be implemented during off-peak period, if considered necessary.
- The works area could be decked over with steel plates and all lane closure would reopen to traffic outside the working hours if considered necessary.
- Construction works would be carried out outside bus operation hours for modification works of the existing bus lay-by at Wai Fat Road westbound.
- Besides, accessibility to Laguna Park Substation should be maintained at all times during construction.
- A minimum of 2.0 m wide walkway would be maintained at all times during construction.
- The proposed TTM schemes for construction of the proposed signalized pedestrian crossing at Wai Fat Road are shown in **Figures 5.8.1** and **5.8.2**.

5.1.15 Construction of cautionary crossings at King Yip Street

- It is proposed that a minimum of 1.5 m 2.0 m wide walkway and accessibility to premises should be maintained at all times during the construction works at walkway sections.
- Road marking works along King Yip Street would be implemented on a lane-bylane basis.
- The TTM schemes of the road marking work would be implemented during offpeak period to minimize traffic impact.

5.1.16 Construction of disabled parking space at Hing Yip Street

- It is proposed that a minimum of 1.5 m 2.0 m wide walkway should be maintained at all times during installation of traffic sign poles.
- The existing loading/unloading bay at Hing Yip Street would be partially closed for about 20 m long from the end taper to facilitate the road markings works.
- The existing carriageway width would be maintained during the construction of the disabled parking spaces.

Zone D - Figure 5.9

5.1.17 Construction of working platform on the existing nullah & construction works of Tsui Ping River

- Works area will be located at western walkway adjacent to Kwun Tong Preliminary Treatment Works at Wai Yip Street.
- A minimum of 2.0 m wide walkways would be maintained.
- The proposed TTM scheme would be implemented 24 hours a day along Wai Yip Street western side walkway.

5.1.18 <u>Junction modification works at junction of Wai Yip Street/ Wai Fat Road/ Cha Kwo</u> Ling Road (Figure 5.9)

- The junction modification works would be carried out on a lane-by-lane basis, all traffic movements would be maintained during the implementation period.
- The works area could be decked over with steel plates and all lane closure would reopen to traffic outside the working hours, if considered necessary.
- The proposed TTM schemes at Kwun Tong By-pass slip roads are shown in Figure 5.9.
- It is suggested that only one TTM scheme would be implemented at a time at the junction of Wai Yip Street/ Wai Fat Road/ Cha Kwo Ling Road to minimize the local disturbance.

5.2 Construction Traffic Impact Assessment

Pedestrian Traffic Impact Assessment

- 5.2.1 Operational assessment was carried out for critical walkways taken into account the proposed TTM schemes at year 2023 as mentioned in **Section 5.1**.
- 5.2.2 The assessment results without the proposed TTM schemes (Reference Scenario) at year 2023 are shown in **Table 5.1**. The assessment results of the affected critical walkways at year 2023 with proposed TTM schemes during construction stage (Construction Design Scenario) are shown in **Table 5.2**.

Table 5.1: Year 2023 Operational Assessment for Pedestrian Walkways (Reference Scenario)

	Clear	Effective	Pedestrian Demand (pph) (3)			Flow F	Rate (ppn	n/m) ⁽⁴⁾	L	.OS (5)	V/C Ratio (6)			
Index (1)	Width (m)	Width (m) (2)	AM	Noon	PM	AM	Noon	PM	AM	Noon	PM	AM	Noon	PM	
P1 (7)	3.5	2.0	1,195	965	1,540	12.0	9.7	15.4	Α	Α	Α	0.24	0.19	0.31	
P2	3.5	2.5	335	185	245	2.7	1.5	2.0	Α	Α	Α	0.05	0.03	0.04	
P3 ⁽⁷⁾	2.0	0.5	75	225	115	3.0	9.0	4.6	Α	Α	Α	0.06	0.18	0.09	
P4	4.0	3.0	100	45	80	0.7	0.3	0.5	Α	Α	Α	0.01	0.01	0.01	
P18	3.5	2.5	1,750	1,005	1,195	14.0	8.0	9.6	Α	Α	Α	0.28	0.16	0.19	
P5	4.0	3.0	945	805	835	6.3	5.4	5.6	Α	Α	Α	0.13	0.11	0.11	
P6	4.0	3.0	370	135	165	2.5	0.9	1.1	Α	Α	Α	0.05	0.02	0.02	
P7 (7)	3.6	2.1	1,440	1,540	1,640	13.7	14.7	15.6	Α	Α	Α	0.27	0.29	0.31	
P8 ⁽⁷⁾	5.0	3.5	675	1,160	1,070	3.9	6.6	6.1	Α	Α	Α	0.08	0.13	0.12	
P9	3.0	2.0	195	25	25	2.0	0.3	0.3	Α	Α	Α	0.04	0.01	0.01	
P10 (7)	3.6	2.1	245	450	480	2.3	4.3	4.6	Α	Α	Α	0.05	0.09	0.09	
P11	2.5	1.5	2,800	2,100	2,195	37.3	28.0	29.3	D	С	С	0.75	0.56	0.59	
P12	3.6	2.6	1,610	1,875	1,450	12.4	14.4	11.2	Α	Α	Α	0.25	0.29	0.22	
P13	2.2	1.2	1,230	990	1,030	20.5	16.5	17.2	В	В	В	0.41	0.33	0.34	
P14	2.2	1.2	1,060	955	745	17.7	15.9	12.4	В	Α	Α	0.35	0.32	0.25	
P15	3.0	2.0	1,030	1,325	820	10.3	13.3	8.2	Α	Α	Α	0.21	0.27	0.16	
P16	3.0	2.0	2,430	2,765	1,230	24.3	27.7	12.3	С	С	Α	0.49	0.55	0.25	
P17	4.5	3.5	65	50	65	0.4	0.3	0.4	Α	Α	Α	0.01	0.01	0.01	

		Effective	Pedes	strian De (pph) ⁽³⁾	mand	Flow F	Rate (ppn	n/m) ⁽⁴⁾	L	.os	5)	V/C Ratio (6)		
Index (1)	Width (m)	Width (m) ⁽²⁾	AM	Ę		AM	Noon	PM	AM	Noon	PM	AM	Noon	PM
P19	4.1	3.1	510	640	695	3.3	4.1	4.5	Α	Α	Α	0.07	0.08	0.09

- (1) Refer to Figure 3.1.
- (2) Effective Width = Clear Width Dead Width (0.5 m at each side of walkway).
- (3) All figures are round up to nearest 5.
- (4) Flow Rate = Pedestrian Demand / 60 min x 1.2 / Effective Width.
- (5) Refer to **Table 3.3**.
- (6) V/C Ratio = Flow Rate / Capacity (refer to TPDM Vol. 2 Ch. 3 Table 3.7.7.1 for capacity of walkway of 50ppm/m or ramp/ staircase of 40ppm/m).
- (7) Effective Width is further reduced by 0.5 m accounting for obstruction of railings or bus stop facilities.

Table 5.2: Year 2023 Operational Assessment for Pedestrian Walkways (Construction Design Scenario)

(1)	(1	n) (2)	Pede	strian De (pph) ⁽³⁾	mand	Flow	Rate (p	pm/m)			LO	S ⁽⁵⁾			V/0	C Ratio	, (6)	ation
Index (1)	Clear Width (m)	Effective Width (m)	МА	Noon	Md	MA	Noon	Md	WY	uooN	Md	20:00 – 06:00 hours	21:00 – 06:00 hours	22:00 – 06:00 hours	MA	uooN	Wd	Figure No. / Mitigation Measure
P1 ⁽⁷⁾	2.0	0.5	780	645	1,115	31.2	25.8	44.6	С	С	D	-	-	-	0.62	0.52	0.89	5.2
	3.5	2.0	1,530	1,150	1,785	15.3	11.5	17.9	Α	Α	В	-	-	-	0.31	0.23	0.36	5.3
P2	3.5	2.5	750	500	670	6.0	4.0	5.4	Α	Α	Α	-	ı	-	0.12	0.08	0.11	5.2
P3 ⁽⁷⁾	2.0	0.5	75	225	115	3.0	9.0	4.6	Α	Α	Α	ı	ı	-	0.06	0.18	0.09	5.3
	2.0	1.0	100	45	80	2.0	0.9	1.6	Α	Α	Α	-	ı	-	0.04	0.02	0.03	5.1
P4	4.0	3.0	730	715	780	4.9	4.8	5.2	Α	Α	Α	-	•	-	0.10	0.10	0.10	5.2
	2.0	1.0	655	485	665	13.1	9.7	13.3	Α	Α	Α	-	-	-	0.26	0.19	0.27	5.3
P18	2.0	1.0	1,325	855	880	26.5	17.1	17.6	С	В	В	-	-	-	0.53	0.34	0.35	5.2
1 10	2.0	1.0	1,475	915	1,030	29.5	18.3	20.6	С	В	В	-	-	-	0.59	0.37	0.41	5.3
P5	2.0	1.0	945	805	835	18.9	16.1	16.7	В	В	В	-	1	-	0.38	0.32	0.33	5.5
P6	2.0	1.0	370	135	165	7.4	2.7	3.3	Α	Α	Α	-	-	-	0.15	0.05	0.07	5.6
P7	2.0	1.0	1,635	1,565	1,665	32.7	31.3	33.3	С	С	D	-	•	-	0.65	0.63	0.67	Section 5.1.16 &
P8	2.0	1.0	870	1,185	1,095	17.4	23.7	21.9	В	С	В	-	-	-	0.35	0.47	0.44	with diverted pedestria n at P9
P9							(Closed										5.8
P10 (7)	3.6	2.1	440	475	505	4.2	4.5	4.8	Α	Α	Α	-	-	-	0.08	0.09	0.10	-

	(-	m) (2)	Pedestrian Demand (pph) (3)				Flow Rate (ppm/m) (4)				LO:	S (5)			V/0	, (6)	ation	
Index (1)	Clear Width (m)	Effective Width (m) (2)	WY	Noon	Md	AM	Noon	PM	AM	Noon	Md	20:00 – 06:00 hours	21:00 – 06:00 hours	22:00 – 06:00 hours	MA	Noon	Md	Figure No. / Mitigation Measure
P11	1.5	0.5	2,800	2,100	2,195	112.0	84.0	87.8	F	F	F	Е	Е	D	2.24	1.68	1.76	Off-
P12	1.5	0.5	1,610	1,875	1,450	64.4	75.0	58.0	Е	F	Е	D	С	С	1.26	1.47	1.13	peak
P13	1.5	0.5	1,230	990	1,030	49.2	39.6	41.2	E	D	D	С	В	В	0.98	0.79	0.82	works
P14	1.5	0.5	1,060	955	745	42.4	38.2	29.8	D	D	С	-		•	0.85	0.76	0.60	-
P15	1.5	0.5	1,030	1,325	820	41.2	53.0	32.8	D	Е	С	С	В	В	0.82	1.06	0.66	Off-
P16	1.5	0.5	2,430	2,765	1,230	97.2	110.6	49.2	F	F	E	E	D	D	1.94	2.21	0.98	peak works
P17	2.0	1.0	65	50	65	1.3	1.0	1.3	Α	Α	А	-	1	1	0.03	0.02	0.03	-
P19	1.5	0.5	510	640	695	20.4	25.6	27.8	В	С	С	-	-	-	0.41	0.51	0.56	-

- (1) Refer to Figure 3.1.
- (2) Effective Width = Clear Width Dead Width (0.5 m at each side of walkway).
- (3) All figures are round up to nearest 10.
- (4) Flow Rate = Pedestrian Demand / 60 min x 1.2 / Effective Width.
- (5) Refer to **Table 3.4**.
- (6) V/C Ratio = Flow Rate / Capacity (refer to TPDM Vol. 2 Ch. 3 Table 3.7.7.1 for capacity of walkway of 50ppm/m or ramp/ staircase of 40ppm/m).
- (7) Effective Width is further reduced by 0.5 m accounting for obstruction of railings or bus stop facilities.
- 5.2.3 In **Table 5.2**, it shows all the affected pedestrian walkways would be operating at LOS "D" or better even with the implementation of proposed TTM schemes except for walkways at Shing Yip Street, Hing Yip Street and Hung To Road (P11 P13 and P15 P16).
- 5.2.4 As shown in **Table 5.2**, the problematic walkways P12 P13, P16 and P11 would be operating at LOS "D" or better during off-peak period within 20:00 06:00 hours, 21:00 06:00 hours and 22:00 06:00 hours respectively. It is proposed that works along the aforementioned walkway sections will be implemented outside AM, Noon and PM peak periods. During the peak periods, the works areas will be decked over, if necessary, to maintain existing walkway width.
- 5.2.5 The section of the proposed works area should be kept as minimal as possible in order to minimize the impact to the pedestrians in the vicinity.

Vehicular Traffic Impact Assessment

- 5.2.6 In order to assess traffic impact due to the Project, junction assessments with the proposed TTM schemes were undertaken.
- 5.2.7 Junction improvement schemes for the junction of Wai Fat Road / Wai Yip Street (J5) had been proposed under the study of Ex-Cha Kwo Ling Kaolin Mine Site (see Figure 5.11 which is extracted from MPC Paper No. 19/14) and would be implemented in year 2021.
- 5.2.8 Therefore, the proposed junction improvement schemes for the junction of Wai Fat Road / Wai Yip Street (J5) would be adopted in the assessment.
- 5.2.9 Junction capacities were assessed for design year 2023 construction design scenarios taking into account the construction traffic, proposed temporary lane closures for loading/ unloading of construction plants and materials and the proposed TTM schemes. The result of the junction performance of the concerned junctions are summarized in **Table 5.3**.

Table 5.3: Year 2023 Junctions Performance

	Reserve	d Capacity	(RC) / Design Flow C	apacity Ratio (DFC)	
			Construction Design		
Index (1)		With Con	struction Traffic & Propo	osed TTMS	Proposed TTMS
	AM	PM	Off-I	oeak	
	AIVI	P IVI	10:00 – 16:00 hours	20:00 – 06:00 hours	
J2	5%	5%	15%	-	Figure 5.4 (upper part)
J3	>100%	25%	-	-	Figure 5.7
J5 (2) (3)	-5%	-2%	4% 70%		Figure 5.9 (upper part)
UU (-/ (º)	-26%	-20%	-19%	30%	Figure 5.9 (lower part)

- (1) Refer to Figure 3.1.
- (2) Junction improvement under study of Ex-Cha Kwo Ling Kaolin Mine Site in MPC Paper No. 19/14 refer to **Figure 5.11**.
- (3) The junction layout at J5 will be subject to further review under a separate study to be commissioned by EKEO / CEDD.
- 5.2.10 As shown in **Table 5.3**, most of the assessed junctions are operating within capacities. However, the junction of Kwun Tong Road / Tsui Ping Road (J2) would be operating at marginal performance (i.e. 10% ≥ RC ≥ 0%) under construction design scenario in year 2023.
- 5.2.11 Besides, junction of Wai Yip Street / Wai Fat Road (J5) would be operating beyond its capacity (i.e. 0% ≥ RC) under construction design scenario in year 2023.

- **D**
- 5.2.12 Noting that junction of Kwun Tong Road/ Tsui Ping Road (J2) would operate at marginal performance under construction design scenario with the proposed TTM schemes shown in **Figure 5.4 (upper part)**, it is proposed that the loading/unloading activities in Zone A should be avoided during AM and PM peak periods to avoid worsening the traffic conditions in the vicinity at Zone A during the construction of Tsui Ping River. The loading/ unloading activities are suggested to be implemented during 10:00–16:00 hours and subject to review during construction stage.
- 5.2.13 As the junction of Wai Yip Street/ Wai Fat Road (J5) would be operating beyond its capacity under construction design scenario with the proposed TTM scheme shown in **Figure 5.9 (upper part)** & **Figure 5.9 (lower part)**, it is therefore suggested that the implementation of the TTM scheme should avoid AM and PM peak periods so as not to worsen the traffic conditions at J5 during the construction of additional crossing facilities at J5. It is suggested that TTM scheme would be implemented within 20:00 06:00 hours of the following day and subject to review during construction stage.
- 5.2.14 The capacity of critical road sections were assessed under design year 2023 reference and construction design scenarios taking into account the construction traffic and the proposed TTM schemes and are summarized in **Table 5.4** and **Table 5.5** respectively.

Table 5.4: Year 2023 Reference Link Capacity

Index	Road Section	Direction	Carriageway Width (m)	Capacity (pcu/hr)	Flo	Hourly ow u/hr)	V/C F	Ratio
				(=)	AM	PM	AM	PM
L1	Wai Yip Street	Northbound	6.6	2,280	1,720	1,150	0.75	0.50
L	Wai Tip Stieet	Southbound	7.0	2,280	1,780	1,950	0.78	0.86
L2	King Yip Street	Eastbound	8.0	3,120	1,210	1,570	0.39	0.50
L3	Wai Fat Road	Eastbound	7.2	2,400	160	280	0.07	0.12
LS	Wai Fat Roau	Westbound	7.2	2,400	890	1,210	0.37	0.50
L4	Kwun Tong Road	Northbound	9.6	5,040	4,190	3,890	0.83	0.77
L5	Tsui Ping	Eastbound	4.5	1,440	910	1,010	0.63	0.70
Lo	Road	Westbound	6.7	1,440	570	490	0.40	0.34

- (1) Refer to Figure 3.1.
- (2) The capacity is referring with TPDM Vol. Ch 2.4, Table 2.4.1.1 and adopted appropriate p.c.u. factor to derive the adopted capacity for assessment.
- 5.2.15 As shown in **Table 5.4**, all of the concerned road sections will operate within an acceptable level in year 2023 reference design scenario (i.e. 1.00 ≥ VC ratio).

5.2.16 The estimated link capacities of the road sections, with the proposed TTM schemes implemented, were assessed with reference to the capacity listed in Table 2 of the Guidelines on Traffic Impact Assessment & Day-time Ban Requirements for Road Works on Traffic Sensitive Routes.

Table 5.5: Year 2023 Construction Design Link Capacity

			Carriagewa	y Width (m)	Capacit	y (pcu/hr)				V/C I	Ratio		
Index (1)	Road Section	Direction	Existing	With Proposed TTMS	Existing (2)	With Proposed TTMS ⁽³⁾	Fle	Hourly ow u/hr)	Wit Constru Traffic	uction	Consti Traf Prop	ith ruction fic & osed MS	Proposed TTMS
							AM	PM	AM	PM	AM	PM	
L2	King Yip Street	Eastbound	8.0	ı	3,120	i	1,230	1,590	0.39	0.51	-	-	-
L3	Wai Eat Dood	Eastbound	7.2	3.7	2,400	1,240	170	290	0.07	0.12	0.14	0.23	Figure 5.8
L3	Wai Fat Road	Westbound	7.2	3.7	2,400	1,240	910	1,230	0.38	0.51	0.73	0.99	Figure 5.8
L4	Kwun Tong Road	Northbound	9.6	1	5,040	1	4,190	3,890	0.83	0.77	-	1	-
		Eastbound	4.5	-	1,440	-	910	1,010	0.63	0.70	-	-	-
L5	L5 Tsui Ping Road	Westbound	6.7	3.5	1,440	1,125	580	500	0.40	0.35	0.52	0.44	Figure 5.4

Remarks:

5.2.17 As shown in **Table 5.5**, it is noted that all of the critical road sections would be operating at an acceptable level in year 2023 design scenario (i.e. 1.00 ≥ V/C ratio) with the proposed TTM schemes implemented.

⁽¹⁾ Refer to Figure 3.1.

⁽²⁾ The capacity is referring with TPDM Vol. Ch 2.4, Table 2.4.1.1 and adopted appropriate p.c.u. factor to derive the adopted capacity for assessment.

⁽³⁾ The capacity with TTMS is in accordance with Table 2 of the Guidelines on Traffic Impact Assessment & Day Time Ban Requirements for Road Works on Traffic Sensitive Route.

6. TRAFFIC IMPACT ASSESSMENT

6.1 Pedestrian Traffic Impact Assessment

- 6.1.1 As mentioned in **Section 4.3**, the forecast visitor generation during the operation of Tsui Ping River would be superimposed onto the years 2023 & 2028 reference pedestrian forecasts to create the design year forecasts for assessment at the design years.
- 6.1.2 The assessment results of the critical walkways at design years 2023 and 2028 reference scenario (before completion of the Project) are shown in **Table 6.1** and **Table 6.2** respectively.

Table 6.1: Year 2023 Operational Assessment for Pedestrian Walkways (Reference Scenario)

	Clear	Effective	Pedes	strian De (pph) (3)	mand	Flow F	Rate (ppn	n/m) ⁽⁴⁾	L	os (5)	V/	C Ratio	(6)
Index (1)	Width (m)	Width (m) ⁽²⁾	AM	Noon	PM	AM	Noon	PM	AM	Noon	Md	AM	Noon	PM
P1 ⁽⁷⁾	3.5	2.0	1,195	965	1,540	12.0	9.7	15.4	Α	Α	Α	0.24	0.19	0.31
P2	3.5	2.5	335	185	245	2.7	1.5	2.0	Α	Α	Α	0.05	0.03	0.04
P3 ⁽⁷⁾	2.0	0.5	75	225	115	3.0	9.0	4.6	Α	Α	Α	0.06	0.18	0.09
P4	4.0	3.0	100	45	80	0.7	0.3	0.5	Α	Α	Α	0.01	0.01	0.01
P18	3.5	2.5	1,750	1,005	1,195	14.0	8.0	9.6	Α	Α	Α	0.28	0.16	0.19
P5	4.0	3.0	945	805	835	6.3	5.4	5.6	Α	Α	Α	0.13	0.11	0.11
P6	4.0	3.0	370	135	165	2.5	0.9	1.1	Α	Α	Α	0.05	0.02	0.02
P7 (7)	3.6	2.1	1,440	1,540	1,640	13.7	14.7	15.6	Α	Α	Α	0.27	0.29	0.31
P8 ⁽⁷⁾	5.0	3.5	675	1,160	1,070	3.9	6.6	6.1	Α	Α	Α	0.08	0.13	0.12
P9	3.0	2.0	195	25	25	2.0	0.3	0.3	Α	Α	Α	0.04	0.01	0.01
P10 (7)	3.6	2.1	245	450	480	2.3	4.3	4.6	Α	Α	Α	0.05	0.09	0.09
P11	2.5	1.5	2,800	2,100	2,195	37.3	28.0	29.3	D	С	С	0.75	0.56	0.59
P12	3.6	2.6	1,610	1,875	1,450	12.4	14.4	11.2	Α	Α	Α	0.25	0.29	0.22
P13	2.2	1.2	1,230	990	1,030	20.5	16.5	17.2	В	В	В	0.41	0.33	0.34
P14	2.2	1.2	1,060	955	745	17.7	15.9	12.4	В	Α	Α	0.35	0.32	0.25
P15	3.0	2.0	1,030	1,325	820	10.3	13.3	8.2	Α	Α	Α	0.21	0.27	0.16
P16	3.0	2.0	2,430	2,765	1,230	24.3	27.7	12.3	С	С	Α	0.49	0.55	0.25

	Clear	Effective	Pedestrian Demand (pph) (3)			Flow Rate (ppm/m) (4) LOS			LOS (5)		V/	C Ratio	(6)	
Index (1)	Width (m)	Width (m) ⁽²⁾	AM	Noon	PM	AM	Noon	PM	AM	Noon	PM	AM	Noon	PM
P17	4.5	3.5	65	50	65	0.4	0.3	0.4	Α	Α	Α	0.01	0.01	0.01
P19	4.1	3.1	510	640	695	3.3	4.1	4.5	Α	Α	Α	0.07	0.08	0.09

Remarks

- (1) Refer to Figure 3.1.
- (2) Effective Width = Clear Width Dead Width (0.5 m at each side of walkway).
- (3) All figures are round up to nearest 5.
- (4) Flow Rate = Pedestrian Demand / 60 min x 1.2 / Effective Width.
- (5) Refer to **Table 3.3**.
- (6) V/C Ratio = Flow Rate / Capacity (refer to TPDM Vol. 2 Ch. 3 Table 3.7.7.1 for capacity of walkway of 50ppm/m or ramp/ staircase of 40ppm/m).
- (7) Effective Width is further reduced by 0.5 m accounting for obstruction of railings or bus stop facilities.

Table 6.2: Year 2028 Operational Assessment for Pedestrian Walkways (Reference Scenario)

	Clear	Effective	Pedes	strian De (pph) (3)	mand	Flow F	Rate (ppn	n/m) ⁽⁴⁾	L	.os	5)	V/	C Ratio	(6)
Index (1)	Width (m)	Width (m) ⁽²⁾	AM	Noon	PM	AM	Noon	PM	MA	Noon	Md	AM	Noon	PM
P1 ⁽⁷⁾	3.5	2.0	1,255	1,015	1,615	12.6	10.2	16.2	Α	Α	В	0.25	0.20	0.32
P2	3.5	2.5	350	195	260	2.8	1.6	2.1	Α	Α	Α	0.06	0.03	0.04
P3 (7)	2.0	0.5	80	240	125	3.2	9.6	5.0	Α	Α	Α	0.06	0.19	0.10
P4	4.0	3.0	105	45	85	0.7	0.3	0.6	Α	Α	Α	0.01	0.01	0.01
P18	3.5	2.5	1,840	1,055	1,255	14.7	8.4	10.0	Α	Α	Α	0.29	0.17	0.20
P5	4.0	3.0	995	850	880	6.6	5.7	5.9	Α	Α	Α	0.13	0.11	0.12
P6	4.0	3.0	390	140	175	2.6	0.9	1.2	Α	Α	Α	0.05	0.02	0.02
P7 (7)	3.6	2.1	1,515	1,615	1,725	14.4	15.4	16.4	Α	Α	В	0.29	0.31	0.33
P8 ⁽⁷⁾	5.0	3.5	705	1,220	1,120	4.0	7.0	6.4	Α	Α	Α	0.08	0.14	0.13
P9	3.0	2.0	205	25	30	2.1	0.3	0.3	Α	Α	Α	0.04	0.01	0.01
P10 (7)	3.6	2.1	260	475	505	2.5	4.5	4.8	Α	Α	Α	0.05	0.09	0.10
P11	2.5	1.5	2,940	2,205	2,305	39.2	29.4	30.7	D	С	С	0.78	0.59	0.61
P12	3.6	2.6	1,695	1,970	1,520	13.0	15.2	11.7	Α	Α	Α	0.26	0.30	0.23
P13	2.2	1.2	1,290	1,040	1,085	21.5	17.3	18.1	В	В	В	0.43	0.35	0.36
P14	2.2	1.2	1,115	1,005	785	18.6	16.8	13.1	В	В	Α	0.37	0.34	0.26
P15	3.0	2.0	1,085	1,390	860	10.9	13.9	8.6	Α	Α	Α	0.22	0.28	0.17

	Clear	W.F. J				n/m) ⁽⁴⁾	L	.OS (5)	V/	C Ratio	(6)		
Index (1)	Width (m)	Width (m) ⁽²⁾	AM	Noon	PM	AM	Noon	PM	AM	Noon	PM	AM	Noon	PM
P16	3.0	2.0	2,550	2,905	1,290	25.5	29.1	12.9	С	С	Α	0.51	0.58	0.26
P17	4.5	3.5	65	50	65	0.4	0.3	0.4	Α	Α	Α	0.01	0.01	0.01
P19	3	2	540	675	730	5.4	6.8	7.3	Α	Α	Α	0.11	0.14	0.15

Remarks:

- (1) Refer to Figure 3.1.
- (2) Effective Width = Clear Width Dead Width (0.5 m at each side of walkway).
- (3) All figures are round up to nearest 5.
- (4) Flow Rate = Pedestrian Demand / 60 min x 1.2 / Effective Width.
- (5) Refer to **Table 3.3**.
- (6) V/C Ratio = Flow Rate / Capacity (refer to TPDM Vol. 2 Ch. 3 Table 3.7.7.1 for capacity of walkway of 50ppm/m or ramp/ staircase of 40ppm/m).
- (7) Effective Width is further reduced by 0.5 m accounting for obstruction of railings or bus stop facilities.
- 6.1.3 From **Tables 6.1** and **6.2**, the assessed walkways are operating at LOS "D" or better, in both design years 2023 and 2028 under reference scenario.
- 6.1.4 The assessment results of the critical walkways at design years 2023 and 2028 design scenario (after the completion of the Project) are shown in **Tables 6.3** and **6.4** respectively.

Table 6.3: Year 2023 Operational Assessment for Pedestrian Walkways (Design Scenario)

	Index (1) Width Width	Effective	Pedes	strian De (pph) (3)	mand	Flow F	Rate (ppn	n/m) ⁽⁴⁾	L	.OS (5)	V/	C Ratio	(6)
Index (1)	Width (m)	Width (m) ⁽²⁾	AM	Noon	PM	AM	Noon	PM	AM	Noon	PM	AM	Noon	PM
P1 (7) (8)	3.3	1.8	1,245	1,015	1,590	13.8	11.3	17.7	Α	Α	В	0.28	0.23	0.35
P2 (8)	4.3	3.3	385	235	295	2.3	1.4	1.8	Α	Α	Α	0.05	0.03	0.04
P3 (7) (8)	2.0	0.5	125	275	165	5.0	11.0	6.6	Α	Α	Α	0.10	0.22	0.13
P4 (8)	4.0	3.0	150	95	130	1.0	0.6	0.9	Α	Α	Α	0.02	0.01	0.02
P18	2.6	1.6	1,750	1,005	1,195	21.9	12.6	14.9	В	Α	Α	0.44	0.25	0.30
P5 (8)	4.0	3.0	1,195	1,055	1,085	8.0	7.0	7.2	Α	Α	Α	0.16	0.14	0.14
P6 (8)	4.0	3.0	620	385	415	4.1	2.6	2.8	Α	Α	Α	0.08	0.05	0.06
P7 (7)	3.6	2.1	1,480	1,580	1,680	14.1	15.0	16.0	Α	Α	В	0.28	0.30	0.32
P8 (7)	5.0	3.5	675	1,160	1,070	3.9	6.6	6.1	Α	Α	Α	0.08	0.13	0.12
P9 (8)	2.7	1.2	450	280	285	7.5	4.7	4.8	Α	Α	Α	0.15	0.09	0.10
P10 (7)	3.6	2.1	565	765	800	5.4	7.3	7.6	Α	Α	Α	0.11	0.15	0.15

	Clear Effective		Pedes	strian De (pph) (3)	mand	Flow F	Rate (ppn	n/m) ⁽⁴⁾	L	.os (5)	V/	C Ratio	(6)
Index (1)	Width (m)	Width (m) ⁽²⁾	AM	Noon	PM	AM	Noon	PM	AM	Noon	PM	AM	Noon	PM
P11	2.5	1.5	2,810	2,110	2,205	37.5	28.1	29.4	D	С	С	0.75	0.56	0.59
P12	3.6	2.6	1,650	1,915	1,490	12.7	14.7	11.5	Α	Α	Α	0.25	0.29	0.23
P13	2.2	1.2	1,230	990	1,030	20.5	16.5	17.2	В	В	В	0.41	0.33	0.34
P14	2.2	1.2	1,060	955	745	17.7	15.9	12.4	В	Α	Α	0.35	0.32	0.25
P15	3.0	2.0	1,030	1,325	820	10.3	13.3	8.2	Α	Α	Α	0.21	0.27	0.16
P16	3.0	2.0	2,430	2,765	1,230	24.3	27.7	12.3	С	С	Α	0.49	0.55	0.25
P17	4.5	3.5	280	265	280	1.6	1.5	1.6	Α	Α	Α	0.03	0.03	0.03
P19	3.0	2.0	830	960	1,015	8.3	9.6	10.2	Α	Α	Α	0.17	0.19	0.20

Remarks:

- (1) Refer to Figure 3.1.
- (2) Effective Width = Clear Width Dead Width (0.5 m at each side of walkway).
- (3) All figures are round up to nearest 5.
- (4) Flow Rate = Pedestrian Demand / 60 min x 1.2 / Effective Width.
- (5) Refer to **Table 3.3**.
- (6) V/C Ratio = Flow Rate / Capacity (refer to TPDM Vol. 2 Ch. 3 Table 3.7.7.1 for capacity of walkway of 50ppm/m or ramp/ staircase of 40ppm/m).
- (7) Effective Width is further reduced by 0.5 m accounting for obstruction of bus stop facilities.
- (8) Designed walkway width under Revitalization of Tsui Ping River have been considered.

Table 6.4: Year 2028 Operational Assessment for Pedestrian Walkways (Design Scenario)

	Index (1) Width Width	Effective	Pedes	strian De (pph) ⁽³⁾		Flow F	Rate (ppn	n/m) ⁽⁴⁾	L	.os	5)	V/	C Ratio	(6)
Index (1)	Width (m)	Width (m) ⁽²⁾	AM	Noon	PM	AM	Noon	PM	AM	Noon	Md	AM	Noon	PM
P1 (7) (8)	3.3	1.8	1,305	1,065	1,665	14.5	11.8	18.5	Α	Α	В	0.29	0.24	0.37
P2 (8)	4.3	3.3	400	245	310	2.4	1.5	1.9	Α	Α	Α	0.05	0.03	0.04
P3 (7) (8)	2.0	0.5	130	290	175	5.2	11.6	7.0	Α	Α	Α	0.10	0.23	0.14
P4 (8)	4.0	3.0	155	95	135	1.0	0.6	0.9	Α	Α	Α	0.02	0.01	0.02
P18	2.6	1.6	1,840	1,055	1,255	23.0	13.2	15.7	С	Α	Α	0.46	0.26	0.31
P5 ⁽⁸⁾	4.0	3.0	1,240	1,095	1,130	8.3	7.3	7.5	Α	Α	Α	0.17	0.15	0.15
P6 ⁽⁸⁾	4.0	3.0	640	390	420	4.3	2.6	2.8	Α	Α	Α	0.09	0.05	0.06
P7 ⁽⁷⁾	3.6	2.1	1,555	1,655	1,765	14.8	15.8	16.8	Α	Α	В	0.30	0.32	0.34
P8 ⁽⁷⁾	5.0	3.5	705	1,220	1,120	4.0	7.0	6.4	Α	Α	Α	0.08	0.14	0.13
P9 ⁽⁸⁾	2.7	1.2	460	285	290	4.6	2.9	2.9	Α	Α	Α	0.09	0.06	0.06

	Clear Effective	Effective	Pedes	strian De (pph) (3)		Flow F	Rate (ppn	n/m) ⁽⁴⁾	L	.0s (5)	V/	C Ratio	(6)
Index (1)	Width (m)	Width (m) ⁽²⁾	AM	Noon	PM	AM	Noon	PM	AM	Noon	PM	AM	Noon	PM
P10 (7)	3.6	2.1	575	790	825	5.5	7.5	7.9	Α	Α	Α	0.11	0.15	0.16
P11	2.5	1.5	2,950	2,215	2,315	39.3	29.5	30.9	D	С	С	0.79	0.59	0.62
P12	3.6	2.6	1,730	2,010	1,560	13.3	15.5	12.0	Α	Α	Α	0.27	0.31	0.24
P13	2.2	1.2	1,290	1,040	1,085	21.5	17.3	18.1	В	В	В	0.43	0.35	0.36
P14	2.2	1.2	1,115	1,005	785	18.6	16.8	13.1	В	В	Α	0.37	0.34	0.26
P15	3.0	2.0	1,085	1,390	860	10.9	13.9	8.6	Α	Α	Α	0.22	0.28	0.17
P16	3.0	2.0	2,550	2,905	1,290	25.5	29.1	12.9	С	С	Α	0.51	0.58	0.26
P17	4.5	3.5	280	265	280	1.6	1.5	1.6	Α	Α	Α	0.03	0.03	0.03
P19	3.0	2.0	855	990	1,050	8.6	9.9	10.5	Α	Α	Α	0.17	0.20	0.21

Remarks:

- (1) Refer to Figure 3.1.
- (2) Effective Width = Clear Width Dead Width (0.5m at each side of walkway).
- (3) All figures are round up to nearest 5.
- (4) Flow Rate = Pedestrian Demand / 60 min x 1.2 / Effective Width.
- (5) Refer to **Table 3.3**.
- (6) V/C Ratio = Flow Rate / Capacity (refer to TPDM Vol. 2 Ch. 3 Table 3.7.7.1 for capacity of walkway of 50ppm/m or ramp/ staircase of 40ppm/m).
- (7) Effective Width is further reduced by 0.5 m accounting for obstruction of bus stop facilities.
- (8) Designed walkway width under Revitalization of Tsui Ping River have been considered.
- 6.1.5 From **Tables 6.3** to **6.4**, all assessed pedestrian walkways would be operating at LOS "D" or better in both design years 2023 and 2028 after completion of the Project.
- 6.1.6 Based on the above findings, it is anticipated that the Project would not induce adverse traffic impact to the surrounding pedestrian road network. The Project is considered acceptable from a traffic engineering point of view.

6.2 Operational Vehicular Traffic Impact Assessment

6.2.1 As the Project will not encroach onto any existing carriageway during the operational phase and the traffic generation due to the management/ maintenance of sewerage/ drainage works is anticipated to be minimal, the traffic impact due to the Project in the operational phase is anticipated to be negligible.

7. PEDESTRIAN TRAFFIC ENHANCEMENT MEASURES

7.1 Introduction

- 7.1.1 There has been strong aspiration from the public and Kwun Tong District Council (KTDC) for transforming King Yip Street nullah into Tsui Ping River to enhance the environment, provide quality leisure and greenery space for the public and improve the pedestrian accessibility and connectivity to the major streets and urban spaces in the vicinity.
- 7.1.2 In the District Facilities Management Committee meeting held on 12 January 2017, members of the Committee recommended the strengthening of the connection between Tsui Ping River with the nearby residential areas and facilities, to cope with the continuing development of the area.
- 7.1.3 In the Community Workshop held on 11 February 2017, participants expressed the need for additional pedestrian crossing(s) between Tsui Ping River and Wai Fat Road to further link up Laguna Park and Zone C of Tsui Ping River.
- 7.1.4 Besides, as requested by DSD, in order to improve the pedestrian accessibility and strengthen the connection between Tsui Ping River Zone C and Zone D, additional crossings across Kwun Tong By-pass slip roads at existing signalized junction of Wai Yip Street / Wai Fat Road (J5) have been proposed under the Project.
- 7.1.5 Based on the above, additional signalized pedestrian crossing facilities across Wai Fat Road (J9) and additional signalized pedestrian crossing facilities across Kwun Tong By-pass slip road at existing junction of Wai Yip Street / Wai Fat Road (J5) are proposed and discussed in **Sections 7.2** and **7.3** respectively.
- 7.1.6 Apart from the aforementioned crossings facilities, based on the Agreement, the existing northern footbridge ramp beside Kwun Tong Swimming Pool of Footbridge KF90 near junction of Kwun Tong Road/ Tsui Ping Road (J2) will be demolished and re-provided accordingly. This would significantly improve the visual appearance of the area and provide more open space for enjoyment of the public following the completion of the Project.
- 7.1.7 The re-provisioning of the northern footbridge ramp of KF90, adjacent to Kwun Tong Swimming Pool, was investigated and discussed in **Section 7.4**.
- 7.1.8 The landscaped walkway FB06, which will be located adjacent to the waterfront at Zone D, has been proposed under this Agreement. The design considerations were discussed in **Section 7.5**.

7.2 Proposed Additional Crossing Facilities at Wai Fat Road (J9)

- 7.2.1 Currently, there is no direct linkage between the entrance of Laguna Park at Wai Fat Road and the future Tsui Ping River. Pedestrians are using crossing facilities at junctions of Wai Yip Street/ Wai Fat Road (J5) and Shing Yip Street/ Cha Kwo Ling Road/ Wai Fat Road (J4). However, it is observed that the waiting time for pedestrians crossing Wat Fat Road is relatively long at these two heavily trafficked junctions (i.e. J4 & J5).
- 7.2.2 As such, there are initiatives to link up the new Tsui Ping River Garden with the surrounding public open spaces including the existing Laguna Park to the southeast side of Tsui Ping River (Zone C). It is proposed to provide a direct pedestrian linkage between the two public open spaces which are currently segregated by Wai Fat Road at-grade as well as Kwun Tong By-pass viaducts and ramps along its length.
- 7.2.3 The proposed pedestrian linkage across Wai Fat Road will be in a form of at-grade pedestrian crossing controlled by traffic signals as shown in **Figure 7.1**.
- 7.2.4 Wai Fat Road is a 7.3 m wide dual carriageway connecting Shing Yip Street and Cha Kwo Ling Road on the east and Kwun Tong bypass and Wai Yip Street on its west underneath Kwun Tong By-pass.
- 7.2.5 The existing available pedestrian crossings at the signal junctions at both ends of Wai Fat Road are located at approximately 350 m apart, so that pedestrians will have to make a detour to walk between the future Tsui Ping River and Laguna Park.
- 7.2.6 The proposed new at-grade pedestrian crossing will be aligned to connect with the key entrance points of both the future Tsui Ping River and Laguna Park, such that a direct and convenient pedestrian linkage and accessibility can be achieved.

Design Considerations

- 7.2.7 According to the TPDM, a minimum of 3.5 m headroom should be maintained at the proposed pedestrian crossing section and walkway at Wai Fat Road.
- 7.2.8 A minimum 60m distance should be maintained between the stop-line and existing run-ins for Laguna Park substation at Wai Fat Road south-west bound.
- 7.2.9 Based on the aforementioned design considerations, an at-grade pedestrian crossing is proposed near the entrance of Laguna Park adjacent to the existing bus stop as shown in **Figure 7.1**.
- 7.2.10 The existing dwarf wall that segregates Wai Fat Road eastbound and westbound traffic would be demolished and converted to a refuge island for pedestrians crossing Wai Fat Road.

- 7.2.11 The existing bus layby is bounded by the proposed pedestrian crossing on the west and a run-in of Laguna Park substation on the east. In order to keep the bus layby as far away as the proposed pedestrian crossing and not to affect the day to day operation of bus service, the bus stop would be slightly modified based on TPDM requirements.
- 7.2.12 Moreover, the visibility of the proposed pedestrian crossing has been reviewed. The result shows that the minimum required sight distance of the proposed pedestrian crossing could be achieved. The proposed pedestrian crossing is located about 130 m and over 200 m apart from Wai Fat Road/ Shing Yip Street/ Cha Kwo Ling Road (J4) and Wai Fat Road/ Wai Yip Street (J5) respectively, the required minimum junction spacing of 100 m on local distributors as stated in TPDM could be complied with.
- 7.2.13 Based on the above, the location of the proposed pedestrian crossing is considered technical feasible from traffic engineering point of view.
- 7.2.14 In additional, the proposed pedestrian crossing with push buttons is suggested in order to minimize the impact to the vehicular traffic and reduce the waiting time for pedestrians with immediate response to the pedestrian phase, subject to TD's consideration.

Forecast Junction Performance

- 7.2.15 A similar methodology, as mentioned in **Section 4**, will be applied to derive the year 2028 design traffic flows.
- 7.2.16 In year 2023, junction improvement schemes for the junction of Wai Fat Road / Shing Yip Street / Cha Kwo Ling Road (J4) and the junction of Wai Yip Street / Wai Fat Road (J5) that were proposed under the Study of Ex-Cha Kwo Ling Kaolin Mine Site (see Figures 5.10 and 5.11 which were extracted from MPC Paper No. 19/14) has been considered. The junction improvement schemes of J4 and J5 mentioned in MPC Paper No. 19/14 are shown in Figures 5.10 and Figure 5.11 respectively for reference. Furthermore, it is given that J4 would be further improved under the proposed King Yip Street Commercial Development (EKEO's study) expected to be completed in year 2023. Therefore, the latest design of junction of Wai Fat Road/ Shing Yip Street/ Cha Kwo Ling Road (J4) would be adopted to assess the likely traffic impact arising from the proposed signalized pedestrian crossing at Wai Fat Road (J9) in design years 2023 (completion of Tsui Ping River) and 2028 (5 years after the completion of Tsui Ping River).
- 7.2.17 The junction improvement schemes for the junction of Wai Fat Road/ Shing Yip Street/ Cha Kwo Ling Road (J4) under EKEO's study is shown in **Figure 7.2** for reference.

- 7.2.18 Besides, as mentioned in **Section 7.1**, additional crossings across Kwun Tong Bypass slip roads at the existing signalized junction of Wai Yip Street/ Wai Fat Road (J5) would be proposed under the Project (as discussed in **Section 7.3**). As such, the latest junction design for J5 would be adopted to assess the likely traffic impact arising from the proposed signalized pedestrian crossing at Wai Fat Road (J9).
- 7.2.19 The junction modification scheme for the junction of Wai Yip Street/ Wai Fat Road (J5) under the Project is shown in **Figure 7.3** for reference.
- 7.2.20 The proposed junction performance of the proposed signalized pedestrian crossing at Wai Fat Road (J9) for design years 2023 and 2028 are shown in **Table 7.1** and correlated calculation sheets are attached in **Appendix A**.

Table 7.1: Years 2023 & 2028 Junction Performance of Proposed Signalized Pedestrian Crossing at Wai Fat Road

			Reserved C	apacity (RC)	
Index	Junction	Year	2023	Year	2028
		AM	PM	AM	PM
J9	Proposed Wai Fat Road Crossing	>100%	80%	>100%	69%

- 7.2.21 As shown in **Table 7.1**, the proposed signalized pedestrian crossing at Wai Fat Road (J9) would be operating within capacity in design year 2023 and 2028 (RC > 10%).
- 7.2.22 The queue length analysis along Wai Fat Road at the junctions of Wai Fat Road/ Shing Yip Street/ Cha Kwo Ling Road (J4), Wai Yip Street/ Wai Fat Road (J5) and the proposed signalized pedestrian crossing at Wai Fat Road (J9) had been assessed. The calculated average queue lengths along Wai Fat Road are shown in **Table 7.2** for design years 2023 and 2028.

Table 7.2: Years 2023 & 2028 Calculated Average Queue Length along Wai Fat Road

	Es	stimated Average	Queue Length (I	n)
Section	Year	2023	Year	2028
	AM	PM	AM	PM
Junction of Wai Fat Road /	Shing Yip Street	/ Cha Kwo Ling F	Road (J4)	
Wai Fat Road eastbound	15	25	20	30
Junction of Wai Yip Street	/ Wai Fat Road (J	5)		
Wai Fat Road westbound – Lane 1 (Straight ahead)	20	30	20	35
Wai Fat Road westbound –				
Lane 2 (Straight ahead)	20	30	20	35

	Es	stimated Average	Queue Length (ı	m)
Section	Year	2023	Year	2028
	AM	PM	AM	PM
Wai Fat Road westbound –	75	60	160	95
Lane 3 Right Turn	75	00	100	90
Wai Fat Road westbound –	75	60	160	95
Lane 4 Right Turn & U-turn	73	00	100	90
Proposed Wai Fat Road Sig	gnalized Pedestri	an Crossing (J9)		
Wai Fat Road eastbound	5	5	5	10
Wai Fat Road westbound	10	15	10	15

Remarks: (1) Figures are rounded to nearest 5.

7.2.23 From **Table 7.2**, it is noted that the calculated average queues along Wai Fat Road would not be encroaching into the adjacent junctions at junctions of Wai Fat Road/ Shing Yip Street/ Cha Kwo Ling Road (J4), Wai Yip Street/ Wai Fat Road (J5) and the proposed signalized pedestrian crossing at Wai Fat Road (J9) for design years 2023 and 2028. Therefore, it is anticipated that the proposed signalized pedestrian crossing at Wai Fat Road (J9) would be technical feasible from traffic engineering point of view.

Forecast Pedestrian Demand

- 7.2.24 In order to determine an appropriate crossing width for the proposed signalized pedestrian crossing at Wai Fat Road (J9), pedestrian demand across Wai Fat Road at J9 should be predicted.
- 7.2.25 A manual classified pedestrian traffic count survey was conducted on a normal weekday, 16 March 2018 (Friday) during the morning, noon and evening peak hour periods from 07:30 to 09:30, from 11:30 to 14:00 and from 17:00 to 19:00 respectively at pedestrian crossings at the junctions of Wai Fat Road/ Shing Yip Street/ Cha Kwo Ling Road (J4) and Wai Fat Road/ Wai Yip Street (J5).

7.2.26 The observed total pedestrian demand at the crossings on Wai Fat Road near Shing Yip Street and Wai Yip Street are presented in **Table 7.3**.

Table 7.3: Existing Pedestrian Demand Across Wai Fat Road

Location	Pedestrian Demand ⁽¹⁾ (ped/hr)				
	АМ	Noon	РМ		
Across Wai Fat Road near Shing Yip Street	760	535	650		
Across Wai Fat Road near Wai Yip Street	410	365	390		

Remarks: (1) Figures are rounded to nearest 5.

- 7.2.27 Similarly, the background pedestrian forecasts for the design years 2023 and 2028 were projected by applying a growth rate, as mentioned in **Section 4.2.6** to the observed pedestrian flows at the junction of Wai Fat Road/ Shing Yip Street/ Cha Kwo Ling Road (J4), the junction of Wai Yip Street/ Wai Fat Road (J5) obtained from the traffic survey.
- 7.2.28 The forecast visitor generation after the completion of Tsui Ping River would be superimposed onto the years 2023 and 2028 reference pedestrian forecasts to create the design year forecasts for assessment at the design years.
- 7.2.29 Based on the observed pedestrian Origin and Destination (O-D) proportions at J4 and J5 and the forecast pedestrian demand after completion of Tsui Ping River, the estimated pedestrian demand to be diverted to the proposed signalized pedestrian crossing at Wai Fat Road (J9) is shown in **Table 7.4**.

Table 7.4: Estimated Pedestrian Demand at Proposed Wai Fat Road Crossing

Index		Pedestrian Demand (1) (ped/hr)					
	Location	Year 2023			Year 2028		
		AM	Noon	PM	AM	Noon	PM
J9	Wai Fat Road pedestrian crossing	555	490	410	600	540	450

Remarks: (1) Figures are rounded to nearest 5.

- 7.2.30 Based on the estimated pedestrian demand of the proposed crossing, it is anticipated that a minimum of 2.5 m wide crossing would be required to comply with the requirement stipulated in TPDM.
- 7.2.31 The proposed signalized pedestrian crossing at Wai Fat Road (J9) is shown in **Figure 7.1**.

Conclusion

- 7.2.32 As discussed above, the provision of the signalized pedestrian crossing across Wai Fat Road is found to be technical feasible in general from traffic engineering point of view.
- 7.2.33 The proposed signalized pedestrian crossing at Wai Fat Road (J9) is aimed to enhance connectivity between the north and south side of Wai Fat Road, thereby offering convenient access for the public from the south of Tsui Ping River to gain direct access to Tsui Ping River and Kwun Tong Business Area on the north, and vice versa.

7.3 Proposed Additional Crossings Facilities across Kwun Tong By-pass Slip Roads

7.3.1 As requested by DSD, additional crossing facilities across Kwun Tong By-pass slip roads at existing signalized junction of Wai Yip Street / Wai Fat Road (J5) have been proposed under the Project.

Design Consideration

- 7.3.2 The design of additional crossing facilities across Kwun Tong By-pass slips roads would be based on the junction improvement scheme proposed under the study of Ex-Cha Kwo Ling Kaolin Mine Site (see **Figure 5.11**) for the junction of Wai Yip Street/ Wai Fat Road (J5).
- 7.3.3 Based on the existing junction layout and site condition, a 3.0 m wide and 2.5 m wide signalized pedestrian crossings are proposed across the slip road leading to Wai Fat Road eastbound and the slip road leading to Kwun Tong By-pass respectively.
- 7.3.4 Junction markings at the slip road leading to Wai Fat Road eastbound would be slightly modified for additional signalized pedestrian crossing facilities
- 7.3.5 The proposed junction modification scheme and method of control (MOC) are shown in **Figure 7.3**.

Forecast Junction Performance

- 7.3.6 As mentioned above (**Sections 5.2.7 5.2.8**), in year 2023, the junction improvement scheme for the junction of Wai Yip Street/ Wai Fat Road (J5) proposed under the Study of Ex-Cha Kwo Ling Kaolin Mine Site would be adopted to assess the likely traffic impact arising from the proposed junction modification works at J5.
- 7.3.7 It is considered that the phase for the proposed pedestrian crossings could match the proposed MOC under the Study of Ex-Cha Kwo Ling Kaolin Mine Site without affecting the intergreen time under the current proposal. Besides, the additional traffic generation from the Project would be minimal as mentioned in **Section 4.8** after the Project completion. Therefore, under the junction modification scheme, it is noted that the additional pedestrian crossings would not affect the junction performance of J5.

7.3.8 Therefore, it is considered that the traffic impact arising from the junction modification scheme of J5 would be negligible with the proposed junction modification scheme.

Conclusion

7.3.9 As demonstrated above, the proposed junction modification scheme of Wai Yip Street/ Wai Fat Road (J5) is aimed to enhance connectivity between Tsui Ping River and Kwun Tong Promenade thereby offering convenient access for the public from the northeast of Tsui Ping River to gain direct access to the Promenade on the southwest, and vice versa. The pedestrian route between Tsui Ping River and the Promenade is shown in **Figure 7.4**. The provision of the additional signalized pedestrian crossing facilities at the junction of Wai Yip Street / Wai Fat Road (J5) is found to be technical feasible in general from traffic engineering point of view.

7.4 Proposed Permanent Relocation of Existing Footbridge Ramp of Footbridge KF90

- 7.4.1 The existing northern footbridge ramp of Footbridge KF90 beside Kwun Tong Swimming Pool at the junction of Kwun Tong Road/ Tsui Ping Road (J2) will be demolished and re-provided under the Project.
- 7.4.2 The re-provisioning of the northern footbridge ramp of KF90 adjacent to Kwun Tong Swimming Pool was investigated and considered technical feasible under the Project.
- 7.4.3 The internal clear width of the re-provisioned ramp is about 3.1 m, which is the same as the clear width of the existing footbridge ramp proposed to be demolished under the Project. The design of the re-provisioned ramp is shown in **Figure 7.5**.
- 7.4.4 Currently, the subject footbridge KF90 provides an elevated pedestrian linkage between the northern and southern sides of Kwun Tong Road at its junction with Tsui Ping Road. The northern landing point is currently provided with a ramp and a staircase.
- 7.4.5 Under the project of Provision of Universal Access Facilities at Public Footbridges by CEDD, it is noted that an accessible lift will be constructed beside the Kwun Tong Swimming Pool for Footbridge KF90. The northern landing point will be retrofitted with a lift under CEDD's Contract No. CV/2015/01 Provision of Universal Access Facilities for Highway Structure Package 1 Contract 2 (hereinafter referred to as CV/2015/01). The lift retrofitting works will involve the demolition of the existing staircase and re-provision of a new staircase in association with an elevated platform linking the proposed lift as shown in CEDD's Drawing No. UAP1-2/CV/KF90/0101 in Appendix B.

Forecast Pedestrian Demand

- 7.4.6 The observed peak pedestrian flows on the subject footbridge is approximately 765 ped/hr during AM peak period.
- 7.4.7 A similar methodology has been applied to derive the years 2023 and 2028 design traffic flows after the completion of the Project as mentioned in **Section 4**.

- 7.4.8 The year 2023 and year 2028 forecast pedestrian demand at the subject footbridge are approximately 805 ped/hr and 845 ped/hr during AM peak period respectively.
- 7.4.9 Based on the latest programme of the interfacing project of the **CV/2015/01**, it is anticipated that the project would be completed and opened to the public by the time construction works of the Project commences.

Operation Stage

7.4.10 Based on the above assumption, assuming all footbridge users will make use of the northern re-provisioned ramp with an internal width of 3.1 m under the Project, the capacity performance of the re-provisioned footbridge ramp would achieve LOS "A" for the years 2023 and 2028. The operational assessment for the re-provisioned footbridge ramp is shown in **Table 7.5**.

Table 7.5: Years 2023 & 2028 Operational Assessment for Re-Provisioned Footbridge Ramp

Location	Clear Width (m) Effective Width (m)	Width (m)	Year 2023	Year 2028	Year 2023	Year 2028	Year 2023	Year 2028
		Pedestrian Demand (pph) (2)		Flow Rate (ppm/m) (3)		LOS		
Re-Provisioned Footbridge Ramp	3.1	2.1	805	845	7.7	8.0	A	Α

Remarks:

- (1) Effective Width = Clear Width Dead Width (0.5m at each side of walkway).
- (2) All figures are round up to nearest 10.
- (3) Flow Rate = Pedestrian Demand / 60 min x 1.2 / Effective Width.

Conclusion

7.4.11 As demonstrated above, from the point of view of pedestrian traffic flow, the reprovisioned footbridge ramp under the Project would provide adequate flow capacity for the existing footbridge.

7.5 Proposed Landscaped Walkway FB06

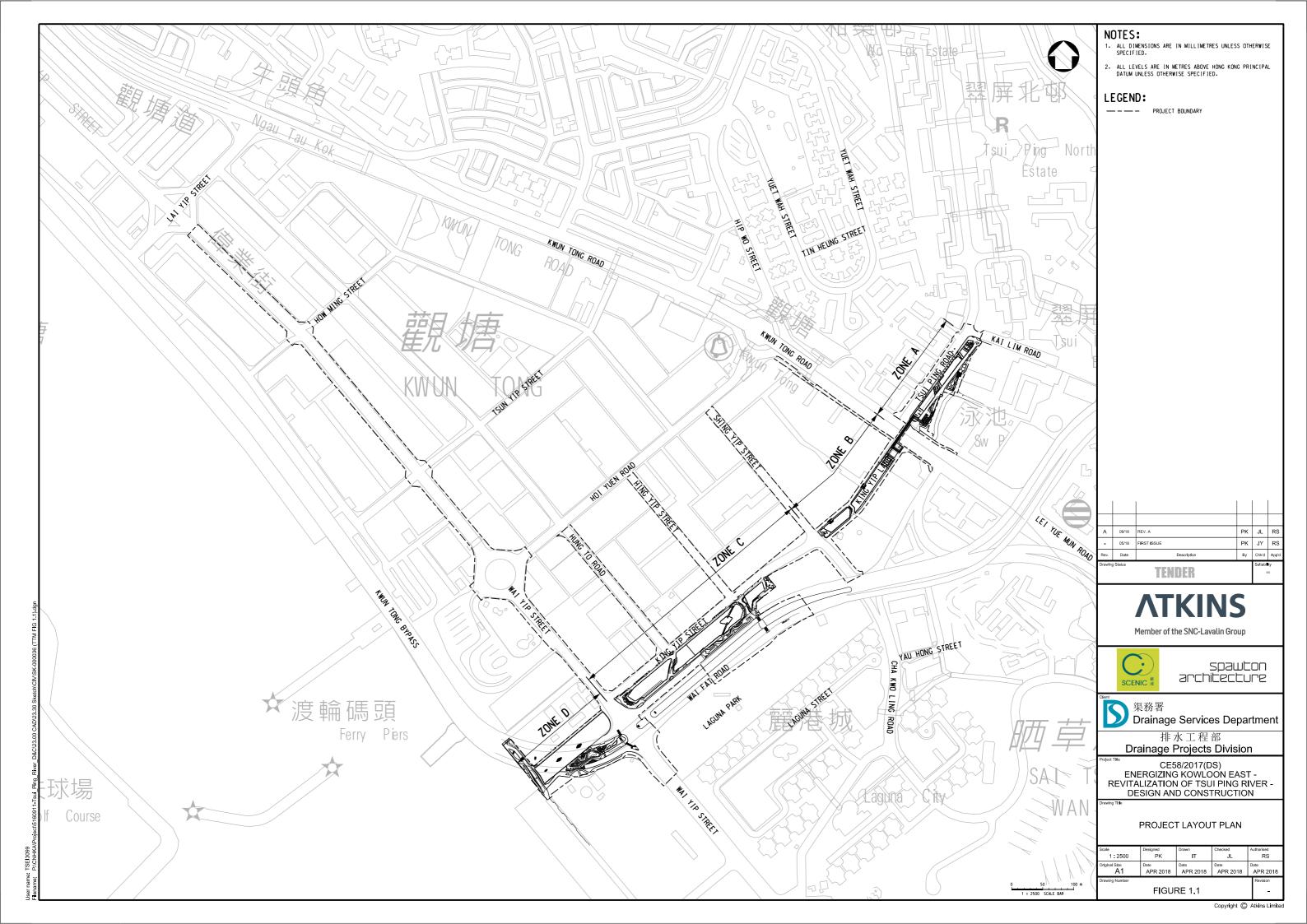
- 7.5.1 A landscaped walkway FB06, which will be located on the waterfront at Zone D, has been proposed under this Agreement.
- 7.5.2 Based on the latest design of the landscaped walkway FB06, it would provide a direct pedestrian linkage between Kwun Tong Promenade and Zone D underneath Kwun Tong By-pass as well as the future Cha Kwo Ling Promenade, which are currently segregated by the King Yip Street nullah.
- 7.5.3 The proposed landscaped walkway FB06 is anticipated to improve the connectivity and accessibility between Kwun Tong Promenade, Zone D underneath Kwun Tong By-pass and the future Cha Kwo Ling Promenade for leisure purpose. It is considered that the presence of the proposed landscaped walkway FB06 could provide quality leisure and greenery space for the public.

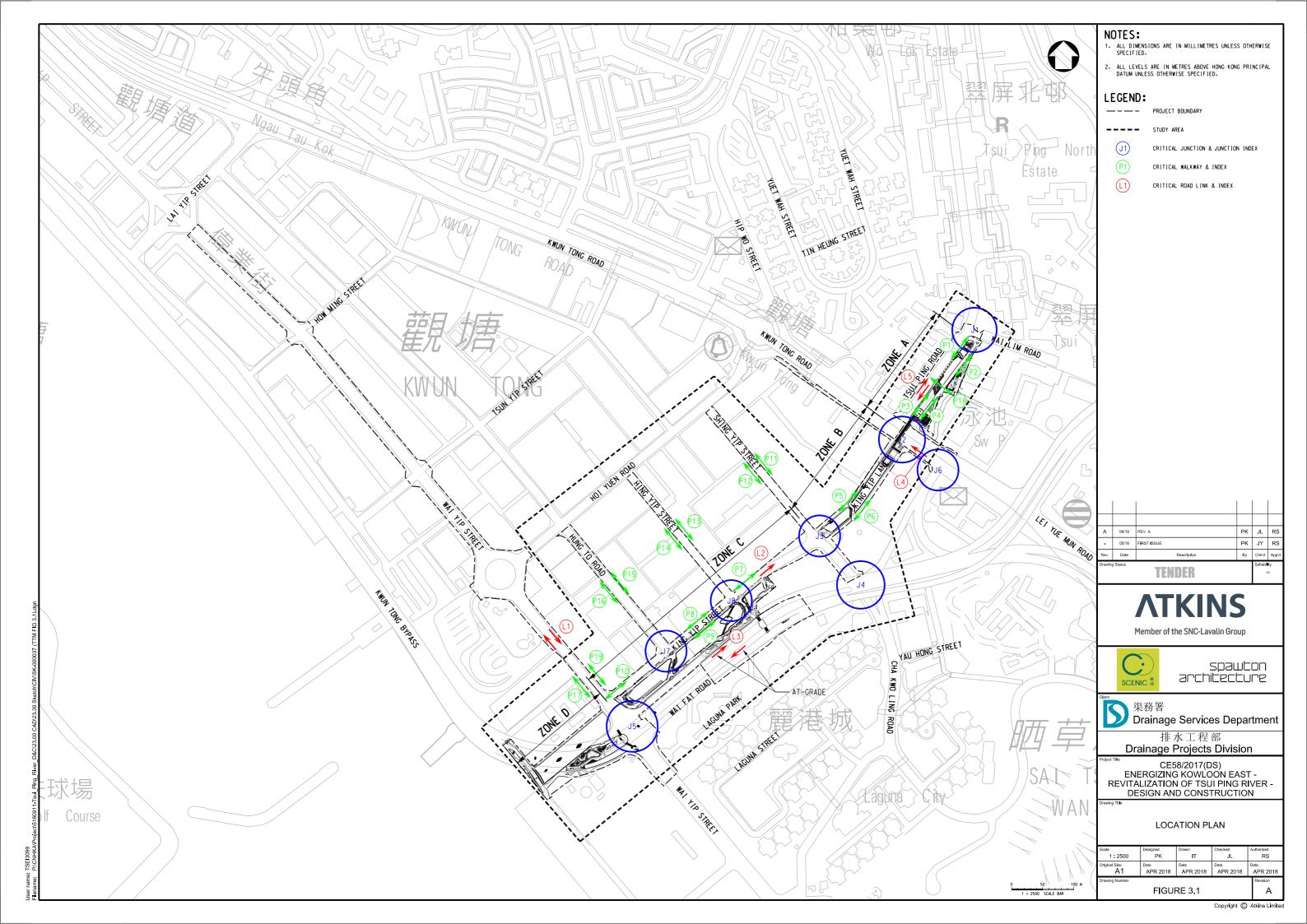
8. SUMMARY AND CONCLUSION

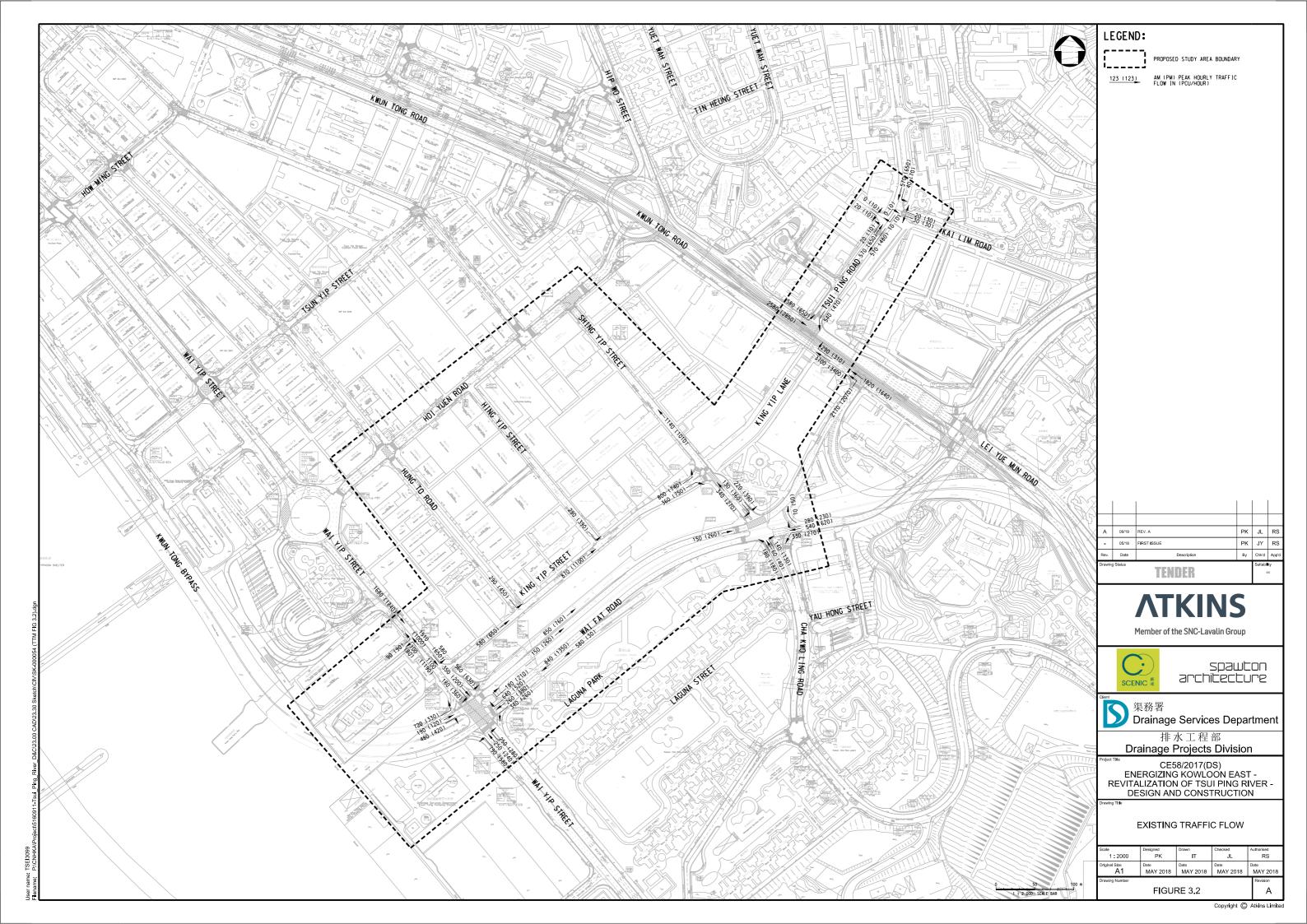
8.1 Summary

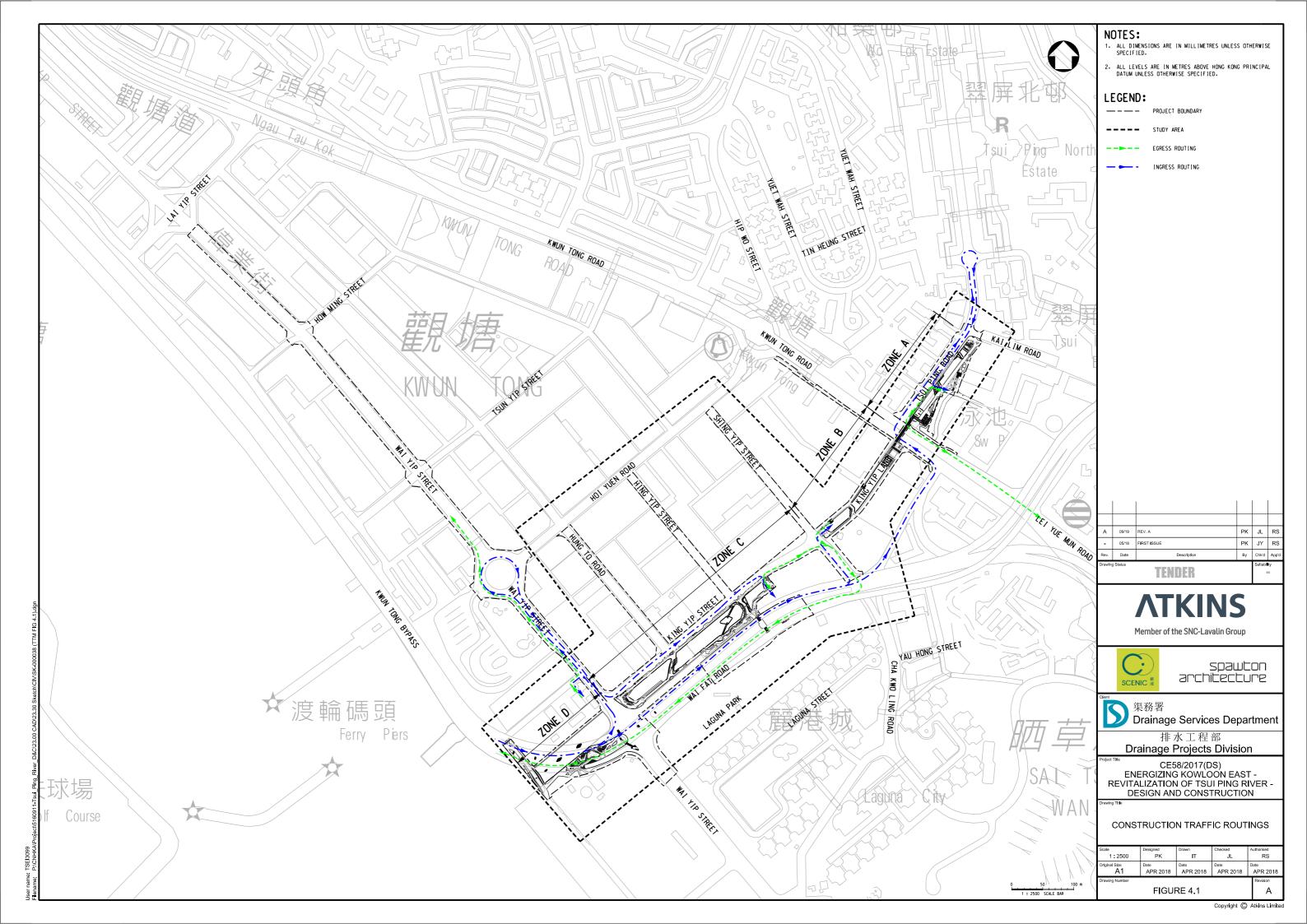
- 8.1.1 ACL was commissioned by DSD in December 2017 to undertake the Project "Agreement No. CE 58/2017 (DS) Energizing Kowloon East Revitalization of Tsui Ping River Design and Construction".
- 8.1.2 Pedestrian and vehicular traffic surveys were conducted to establish the current pedestrian and vehicular traffic condition in the vicinity of the Project.
- 8.1.3 The construction traffic to be generated under the Project had made reference to the construction traffic generated during the construction of Kai Tak River.
- 8.1.4 Junction and link capacity assessments as well as pedestrian walkway assessments have been carried out with respect to the disturbance of the proposed TTM schemes at critical junctions and walkways.
- 8.1.5 All the affected pedestrian walkways would be operating at LOS "D" or better even with the implementation of proposed TTM schemes except for walkways at Shing Yip Street, Hing Yip Street and Hung To Road (P11 P13 and P15 P16).
- 8.1.6 It is therefore proposed that works along the aforementioned walkway sections with estimated LOS "E" and "F" be implemented outside AM, Noon and PM peak periods. During the peak periods, the works area will be decked over, if applicable, to maintain the existing walkway width.
- 8.1.7 In addition, the extent of proposed works area should be kept to a minimum in order to minimize the impact to the pedestrians in the vicinity.
- 8.1.8 All the concerned critical junctions would be operating within capacities, except for the junctions of Kwun Tong Road/ Tsui Ping Road (J2) and Wai Fat Road/ Wai Yip Street (J5) which would be operating at marginal performance and beyond its capacity respectively in year 2023 during the construction design scenario.
- 8.1.9 Therefore, the loading/ unloading activities for the construction of Tsui Ping River at Tsui Ping Road are proposed to be carried out outside daily peak periods to minimize the traffic disturbance along Tsui Ping Road westbound.
- 8.1.10 In addition, the junction of Wai Yip Street/ Wai Fat Road (J5) would be operating beyond its capacity (i.e. 0% ≥ RC) in year 2023 construction design scenario with the proposed TTM schemes at Kwun Tong By-pass slip road. It is suggested that the TTM schemes should avoid AM and PM peak periods so as not to worsen the traffic conditions at J5 during the construction of additional crossing facilities at junction J5.
- 8.1.11 All of the concerned road sections would be operating at an acceptable level in year 2023 Reference and Construction Design scenarios (i.e. 1.00 ≥ V/C ratio).

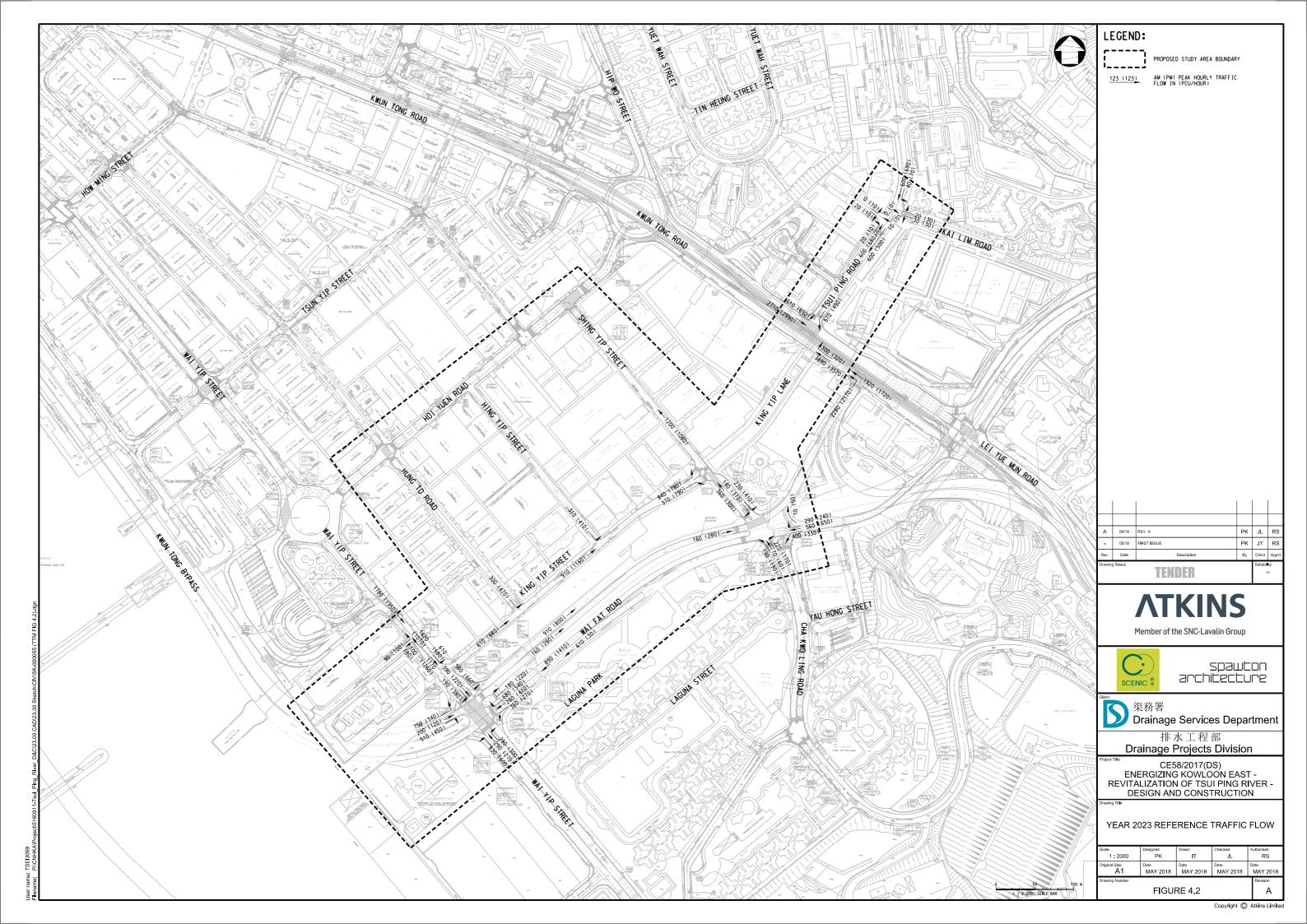
- 8.1.12 The forecast visitors to be generated from the Project were derived from the surveyed peak hour visitor demand of Laguna Park in the vicinity.
- 8.1.13 As the Project will not encroach onto any existing carriageway during the operational phase and the traffic generation due to the management/ maintenance of sewerage/ drainage works is anticipated to be minimal, the traffic impact due to the Project during the operational phase is anticipated to be negligible.
- 8.1.14 Pedestrian walkway assessments have been carried out at critical walkways after completion of the Project.
- 8.1.15 All assessed pedestrian walkways would be operating at LOS "D" or better in both design years 2023 and 2028 after completion of the Project.
- 8.1.16 Therefore, it is anticipated that the Project would not induce significant traffic impact to the surrounding pedestrian road network. The Project is considered acceptable from a traffic engineering point of view in this respect.
- 8.1.17 The provision of the at-grade crossings at Wai Fat Road (J9), additional signalized pedestrian crossings at the junction of Wai Yip Street/ Wai Fat Road (J5) and the design width of the re-provisioned footbridge ramp of KF90 have been reviewed. Provision of the at-grade crossings at Wai Fat Road (J9) and additional pedestrian crossings at the junction of Wai Yip Street/ Wai Fat Road (J5) were found to be technical feasible in general and the design width of the re-provisioned footbridge ramp of KF90 would be adequate from traffic engineering point of view.
- 8.1.18 The landscaped walkway FB06, located on the waterfront at Zone D, has been proposed under this Agreement.
- 8.1.19 The proposed landscaped walkway FB06 is anticipated to improve the connectivity and accessibility between Kwun Tong Promenade and Zone D underneath Kwun Tong By-pass as well as the future Cha Kwo Ling Promenade for leisure purpose.
- 8.1.20 It is considered that the presence of the proposed landscaped walkway FB06 could provide quality leisure and greenery space for the public.

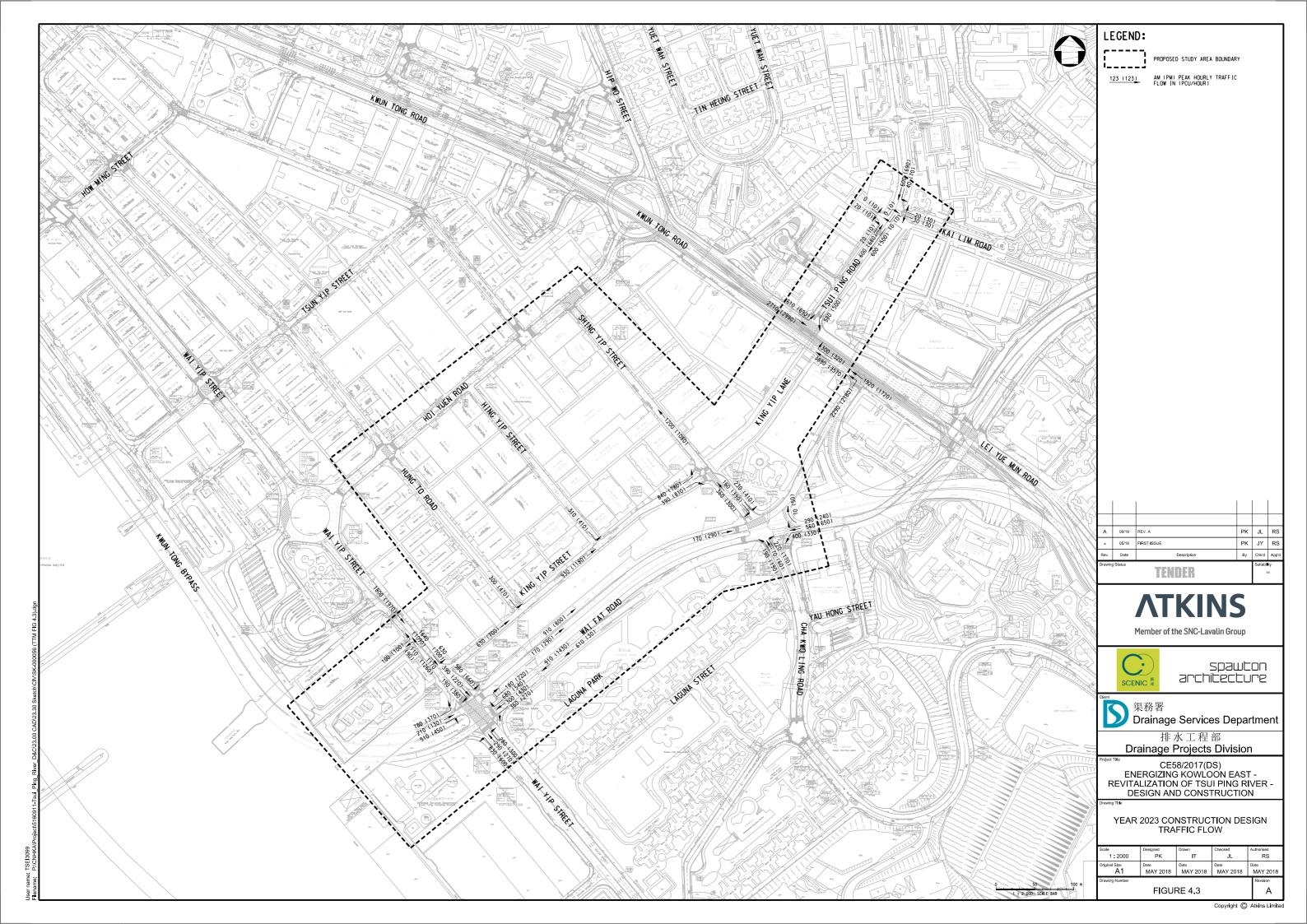

8.2 Conclusion

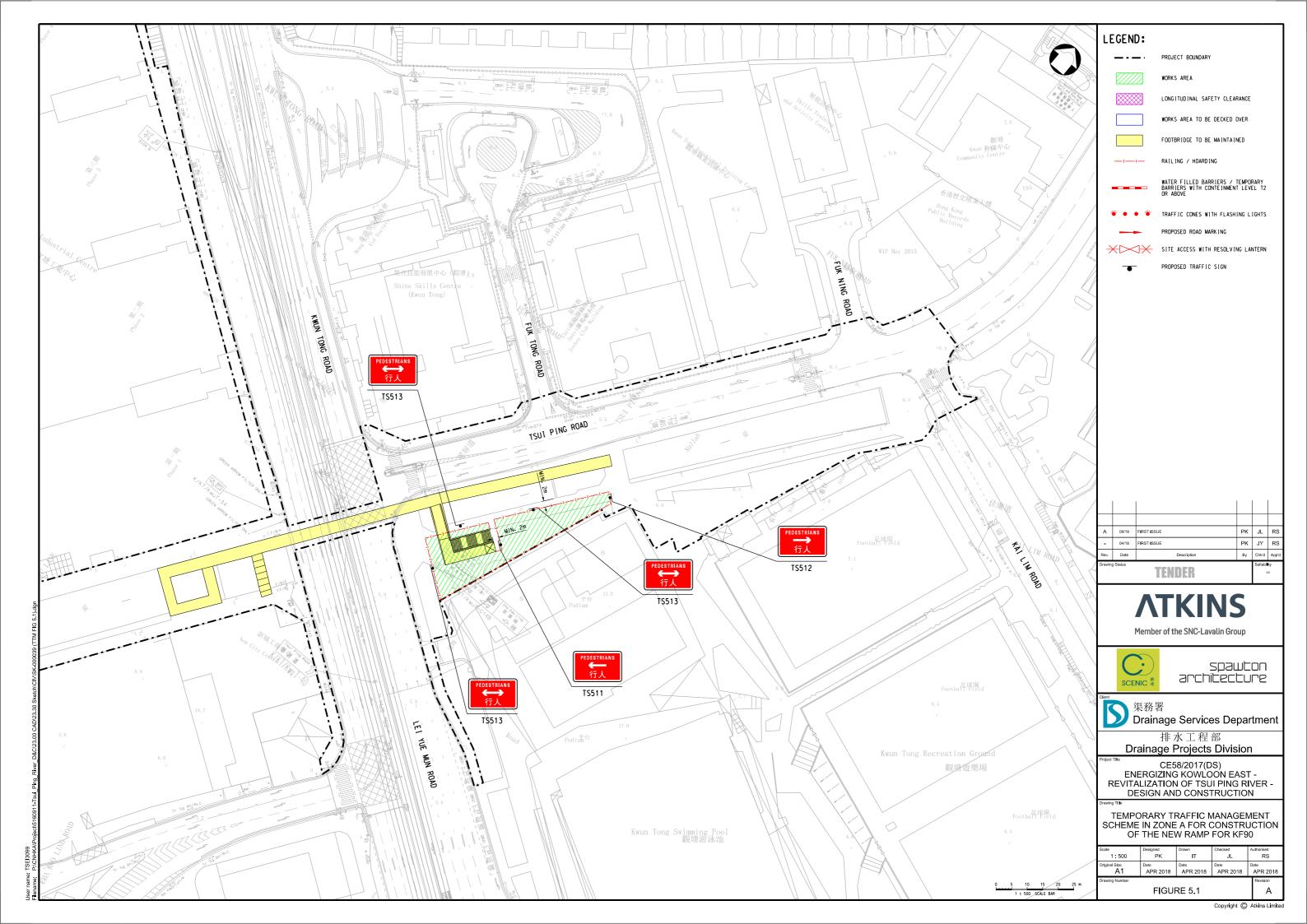

- 8.2.1 It is concluded that subject to the provision of appropriate temporary traffic arrangements and management measures to be developed during the construction stage, the Project would not induce insurmountable traffic impacts and it is considered tolerable during construction stage from a traffic perspective.
- 8.2.2 The Project would not induce insurmountable pedestrian traffic impacts and it is acceptable upon completion of the Project from a traffic perspective.
- 8.2.3 The proposed pedestrian traffic enhancement measures were all found technical feasible in general and acceptable upon completion of the Project from a traffic perspective.

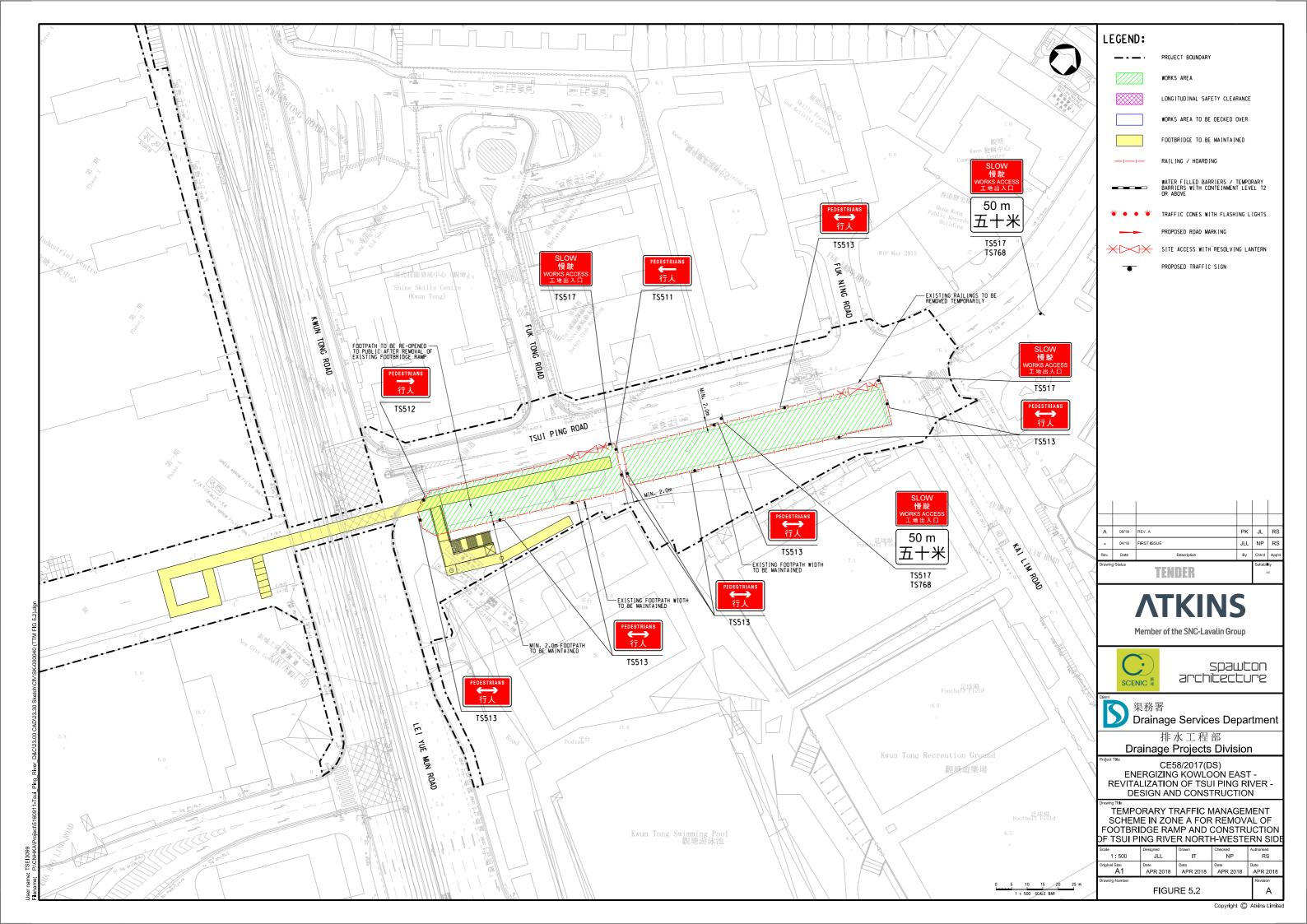


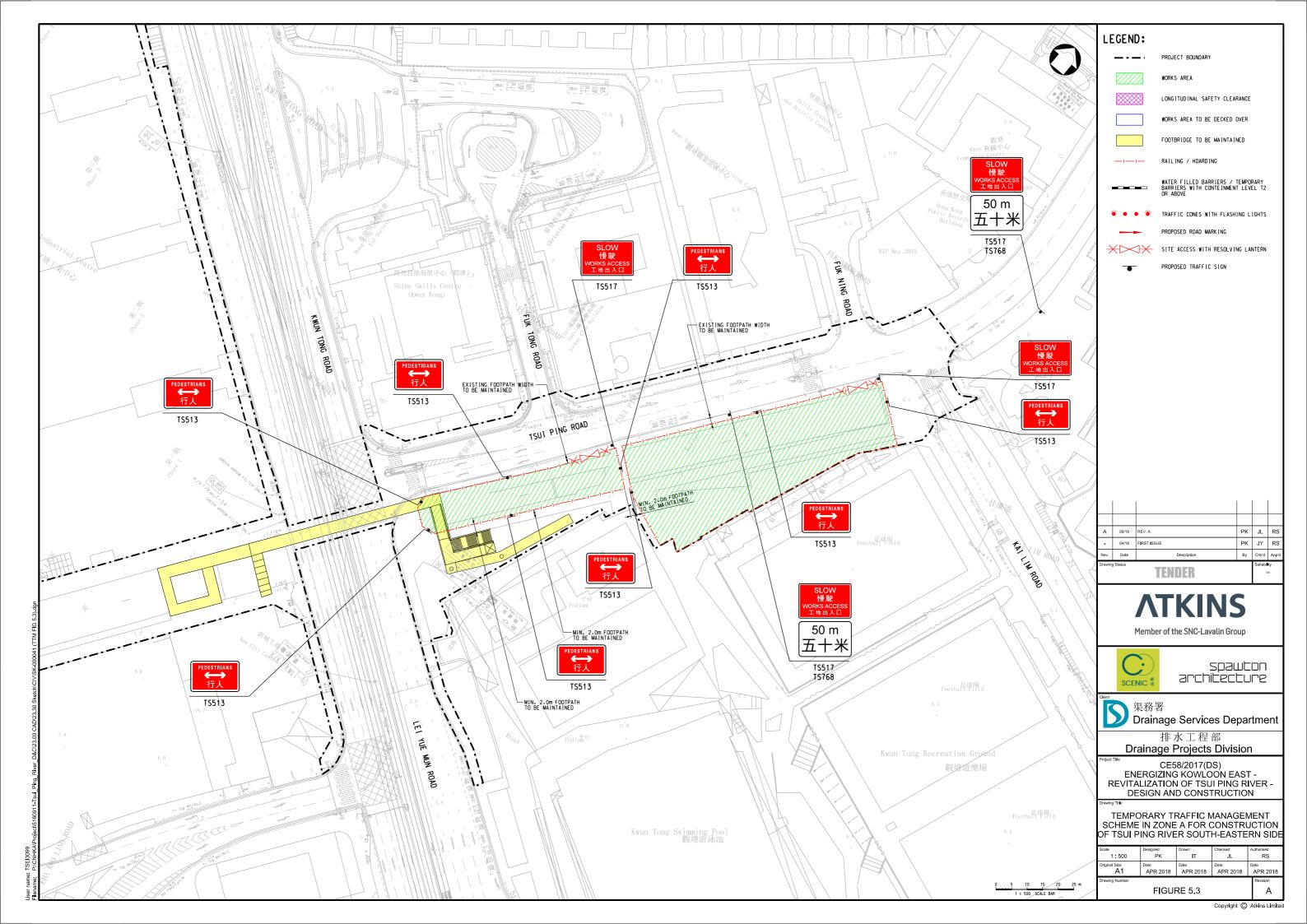


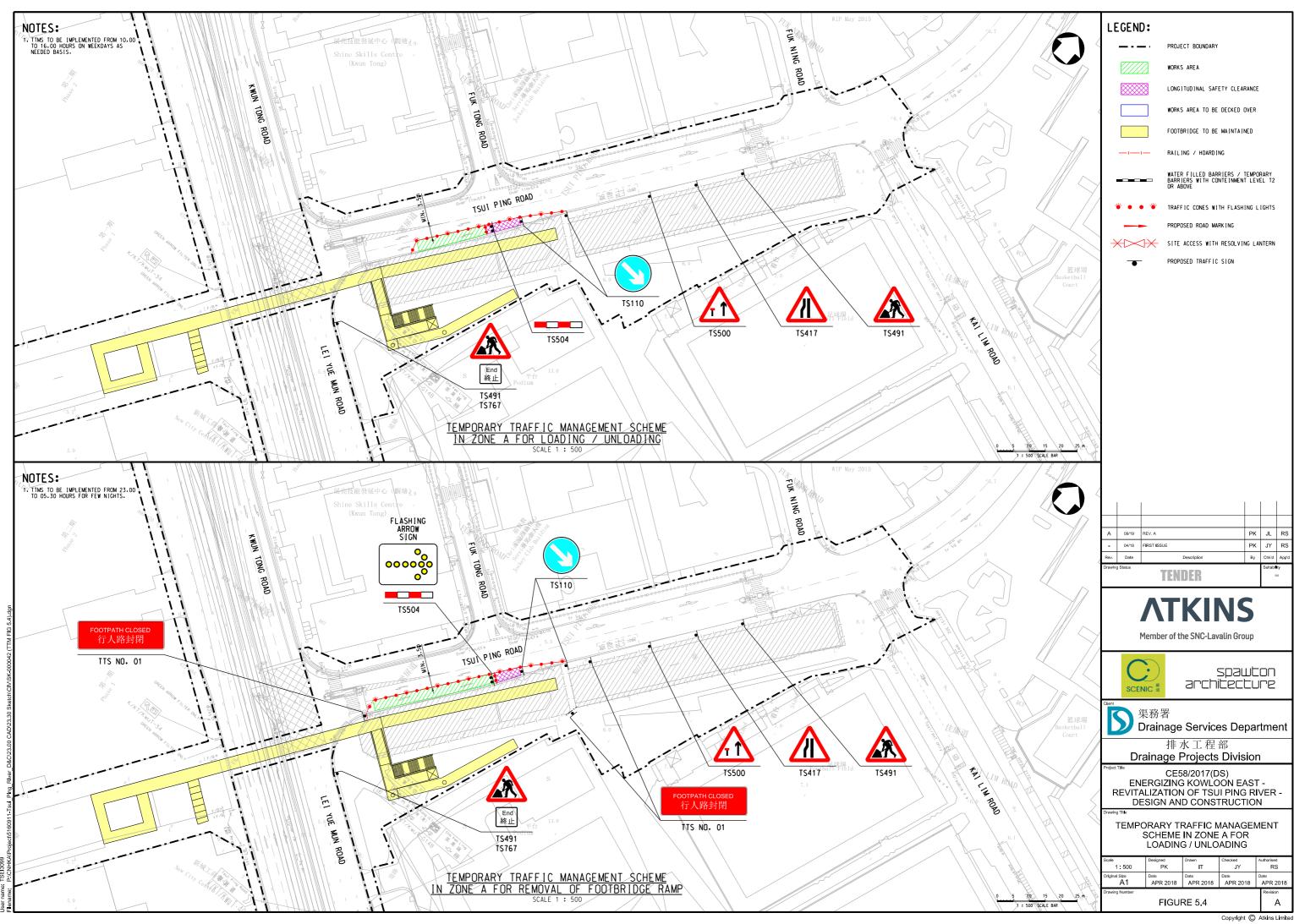

Figures

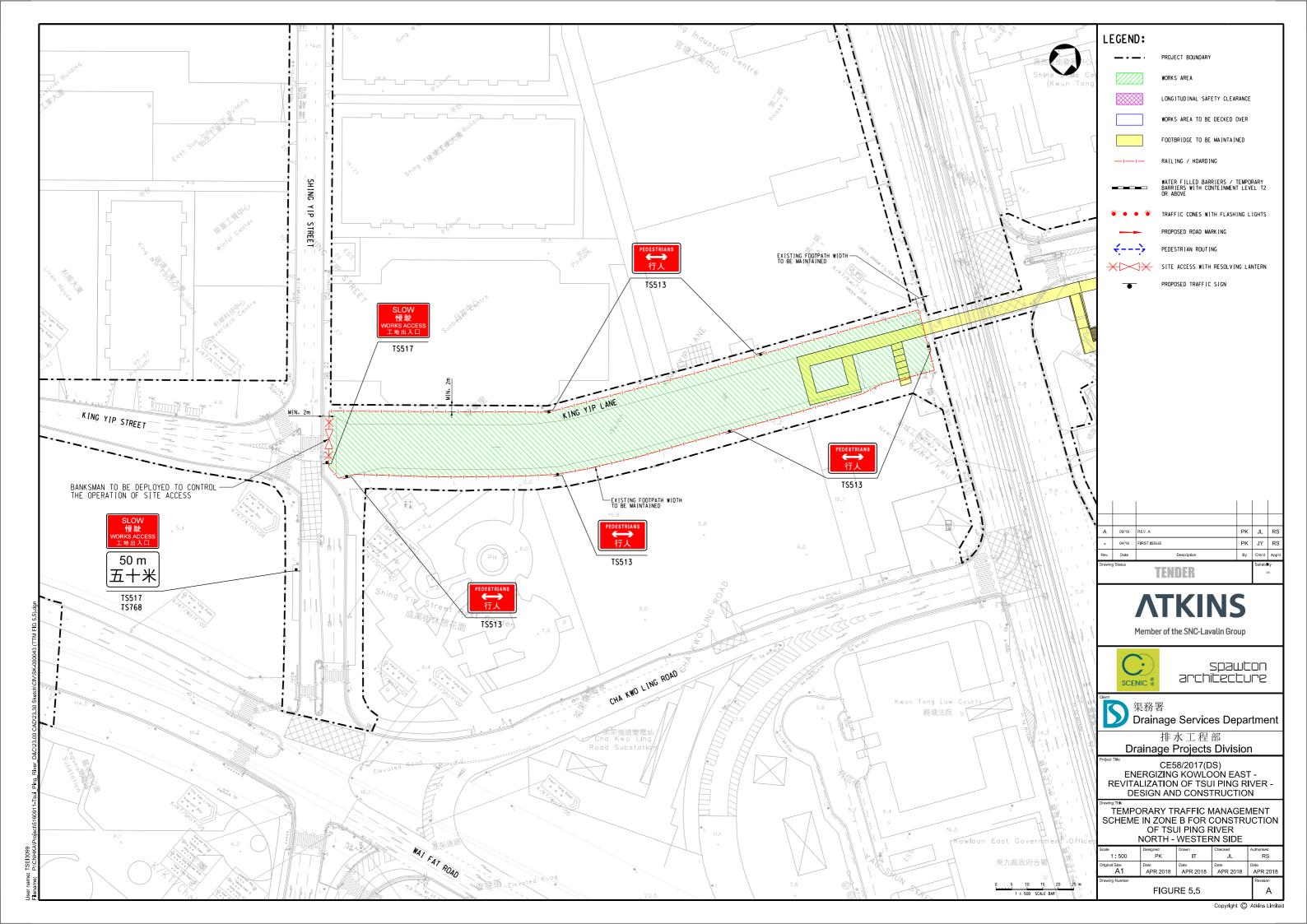


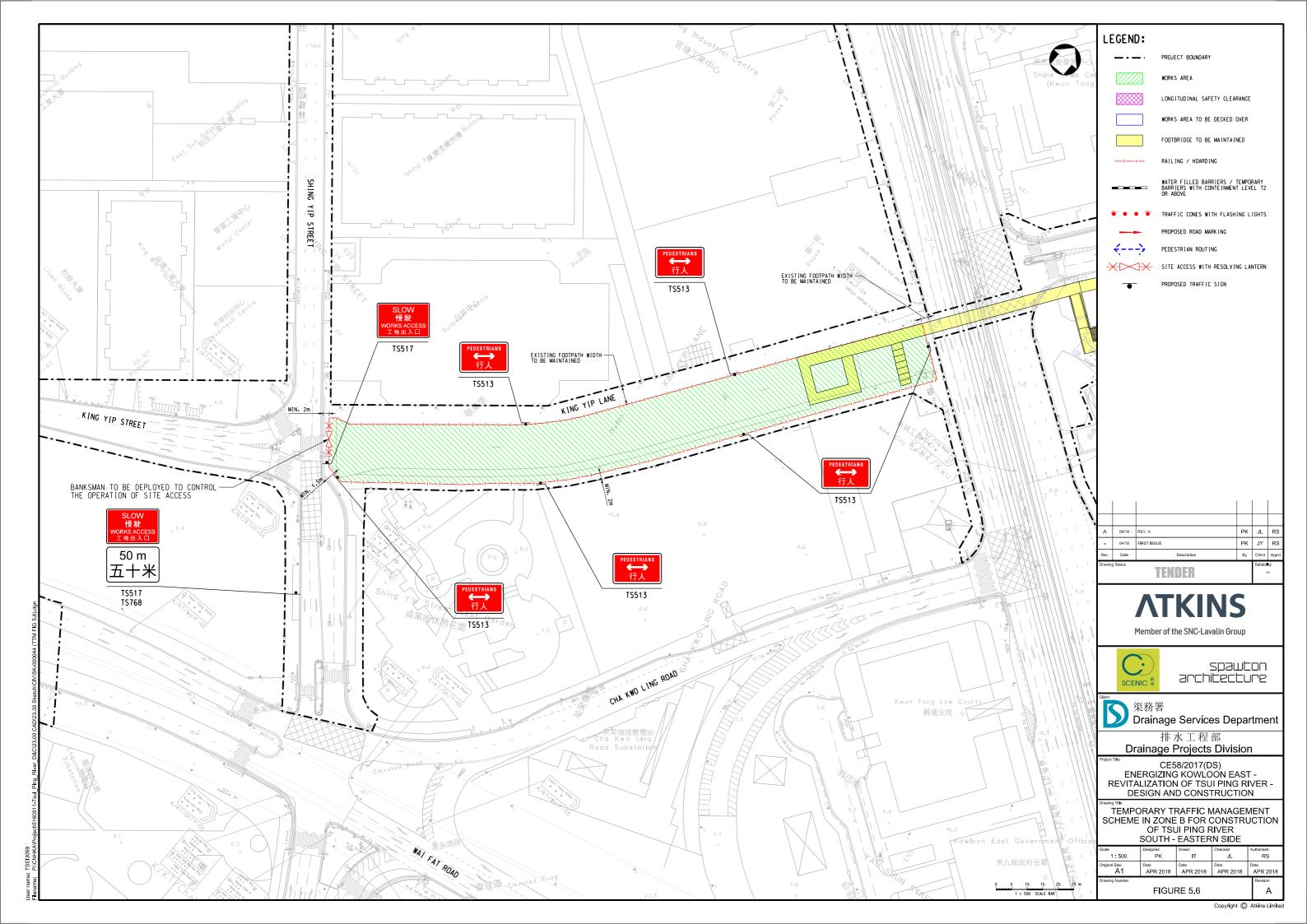


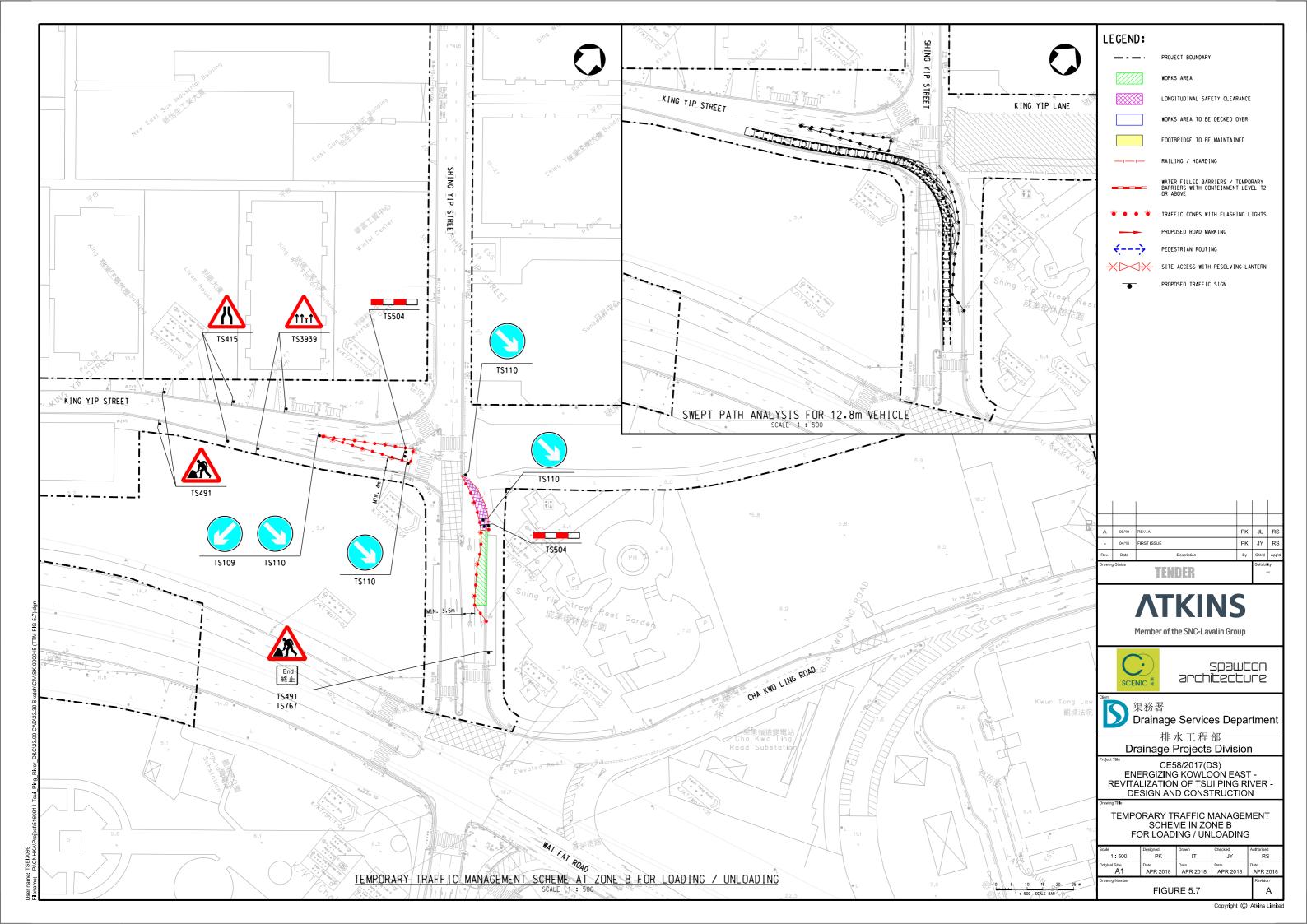


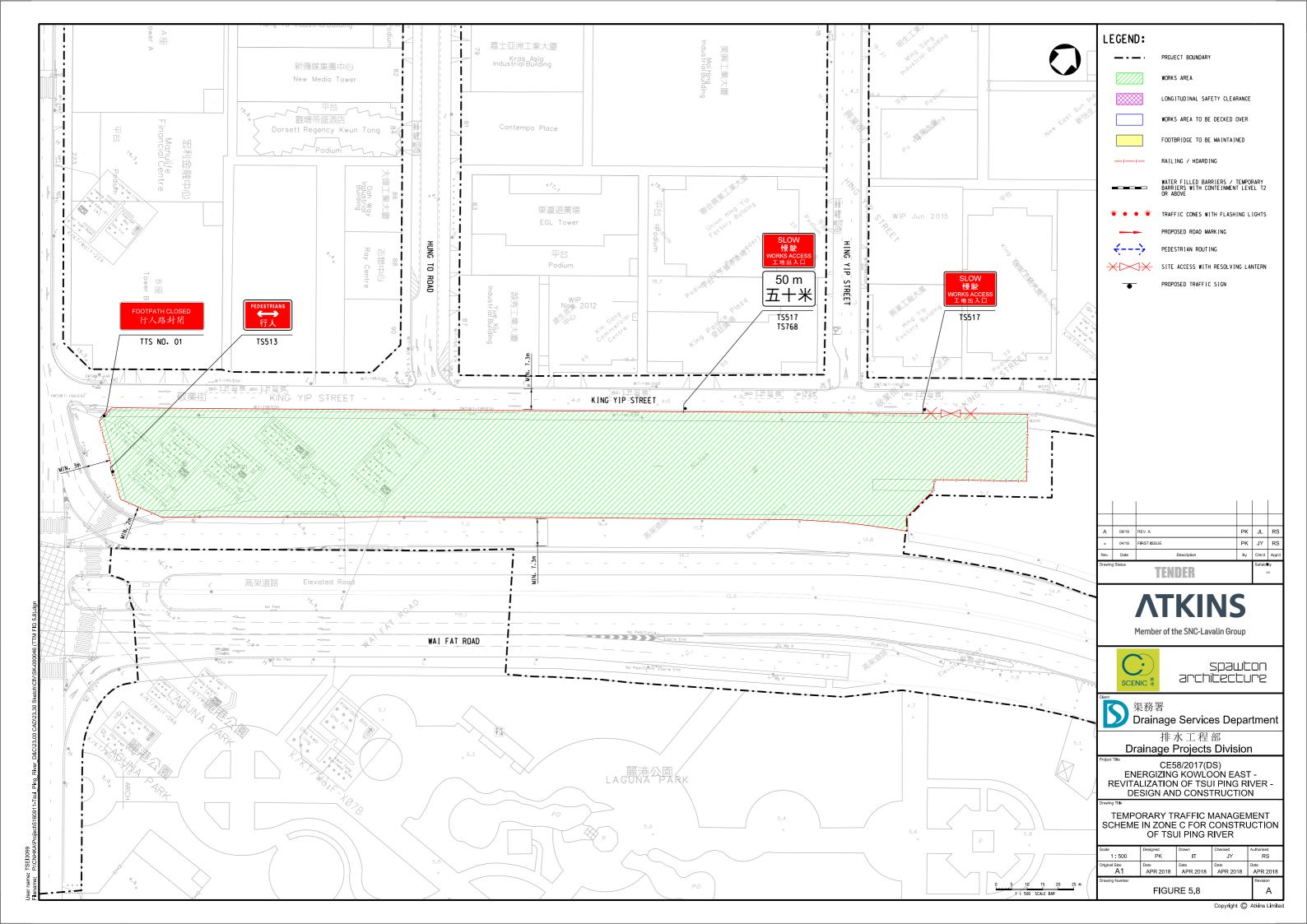


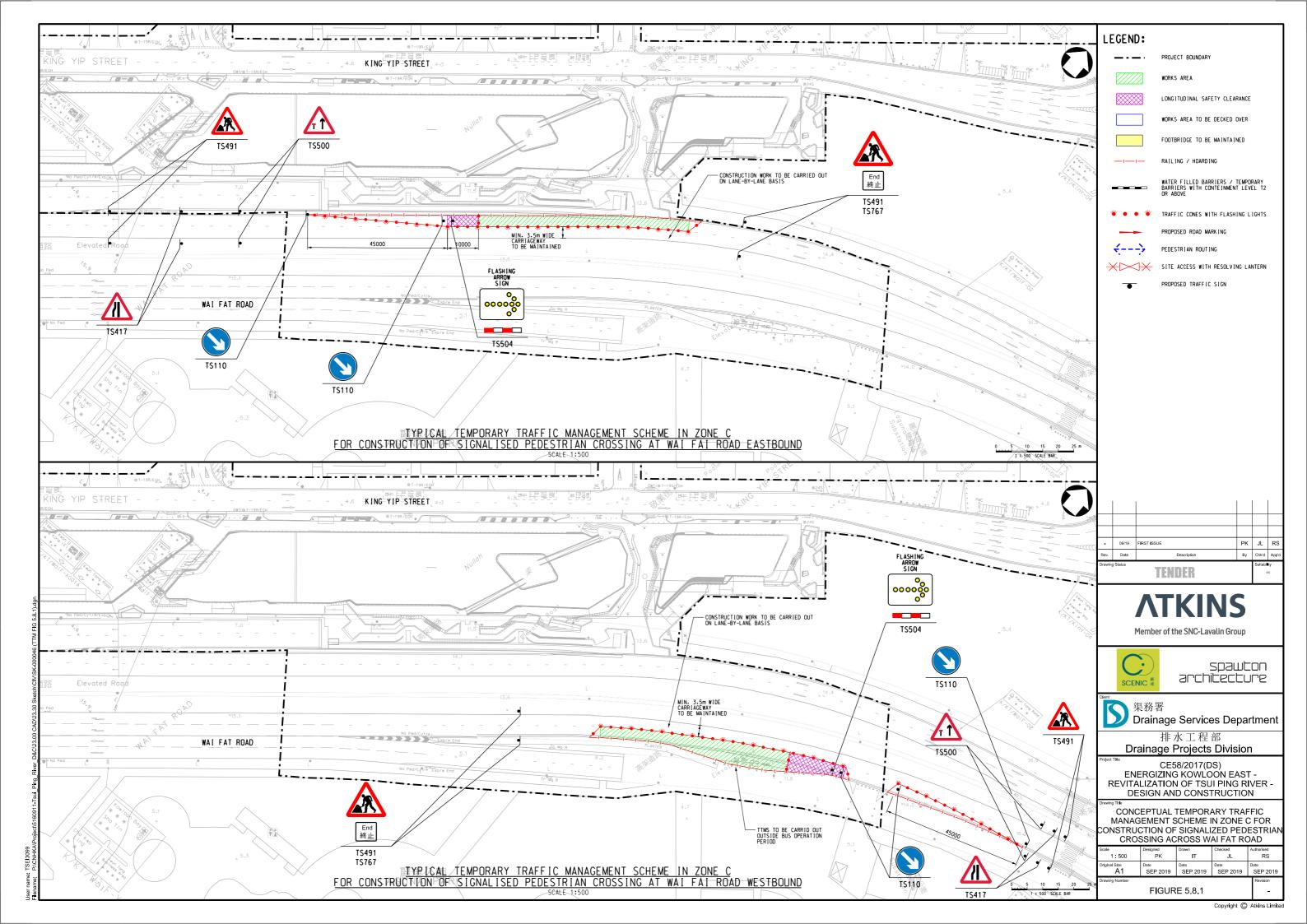


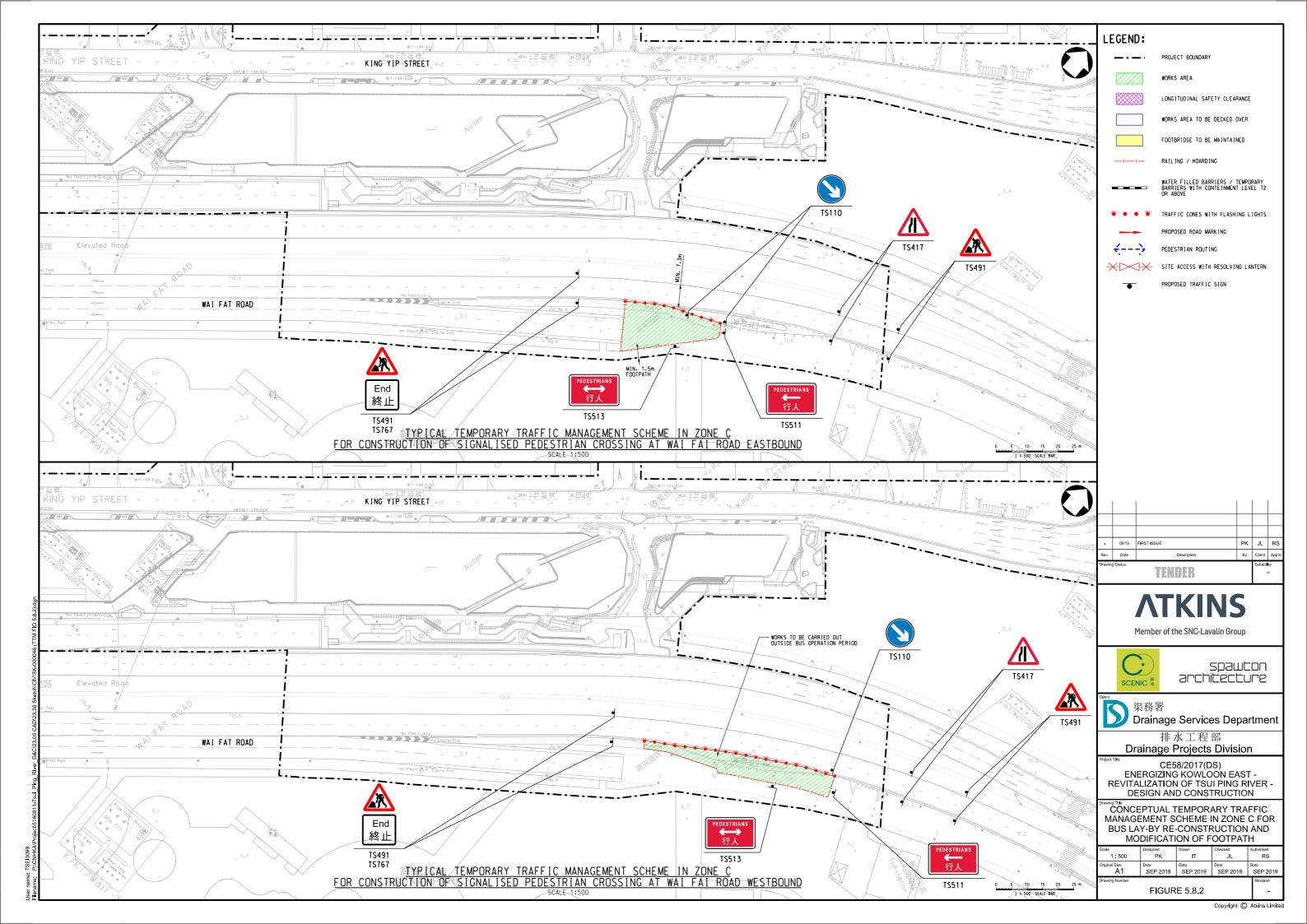


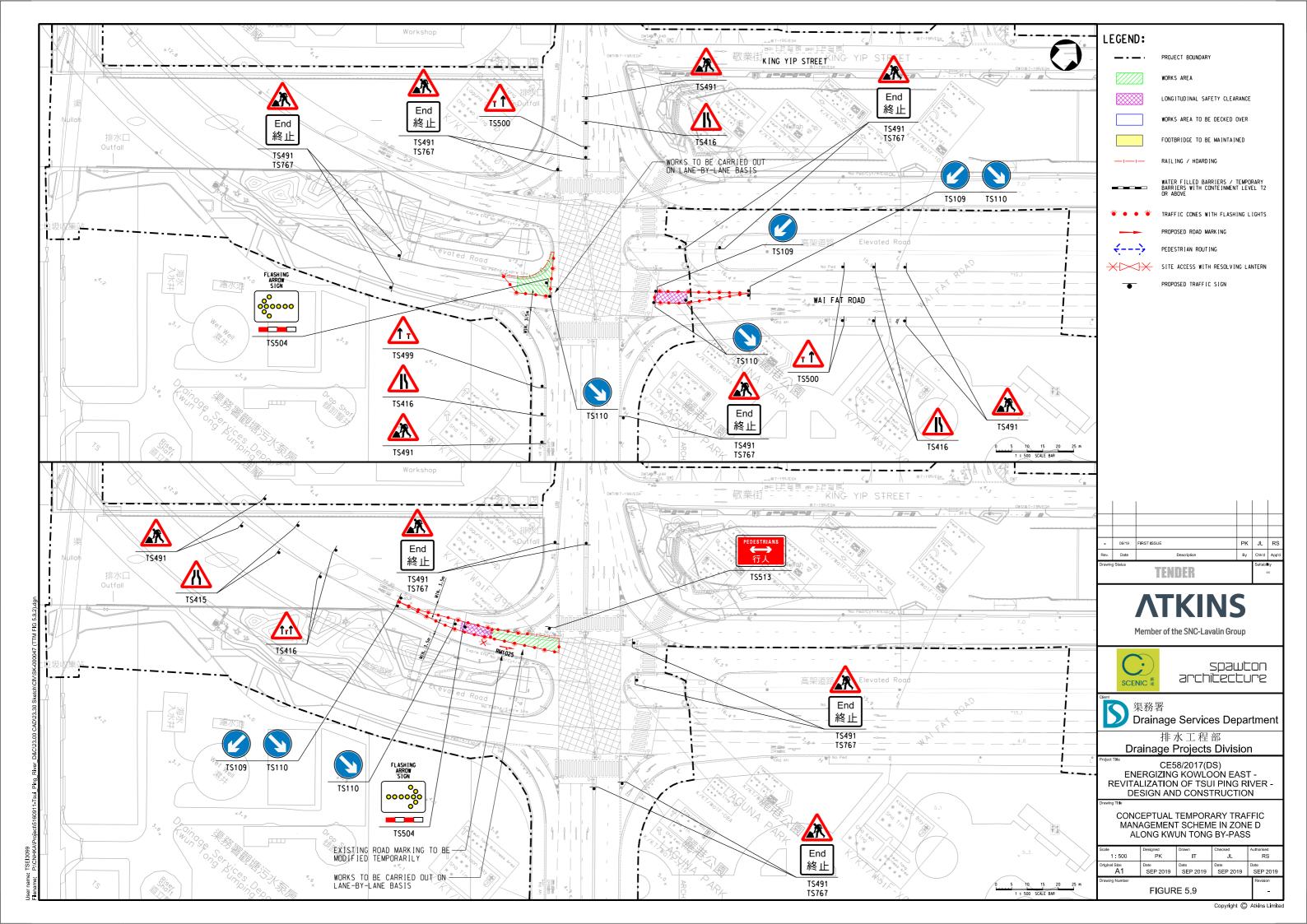


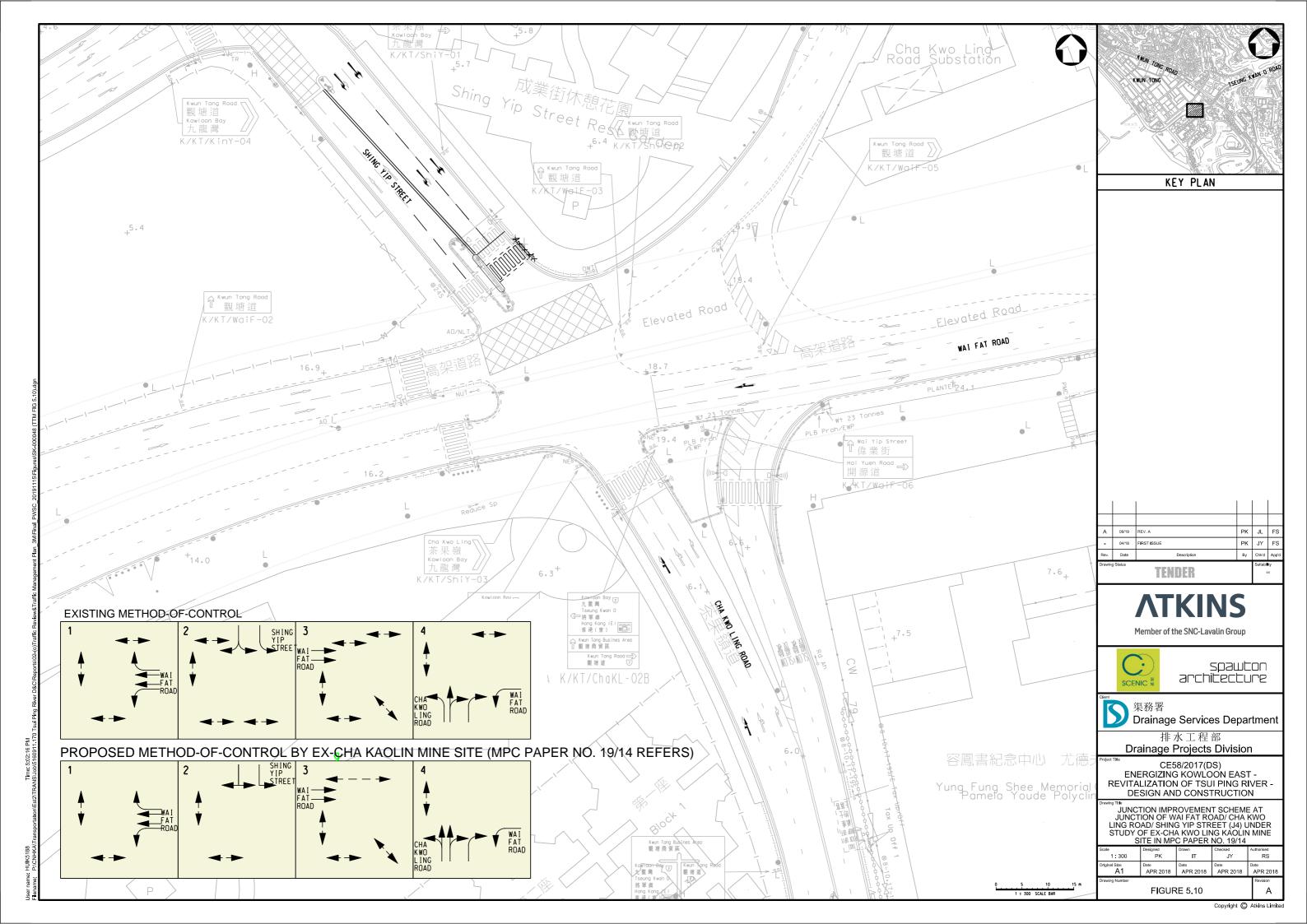


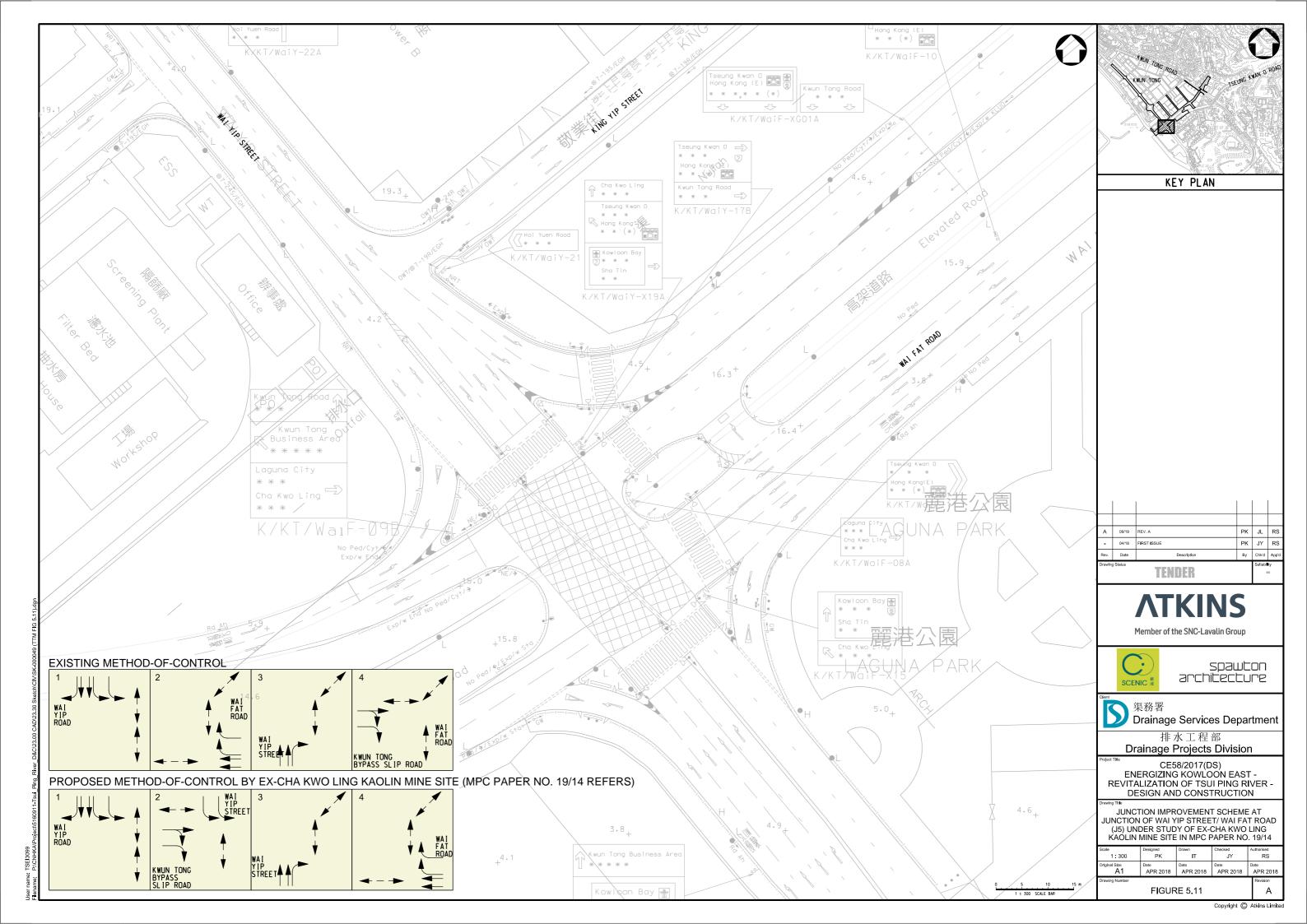


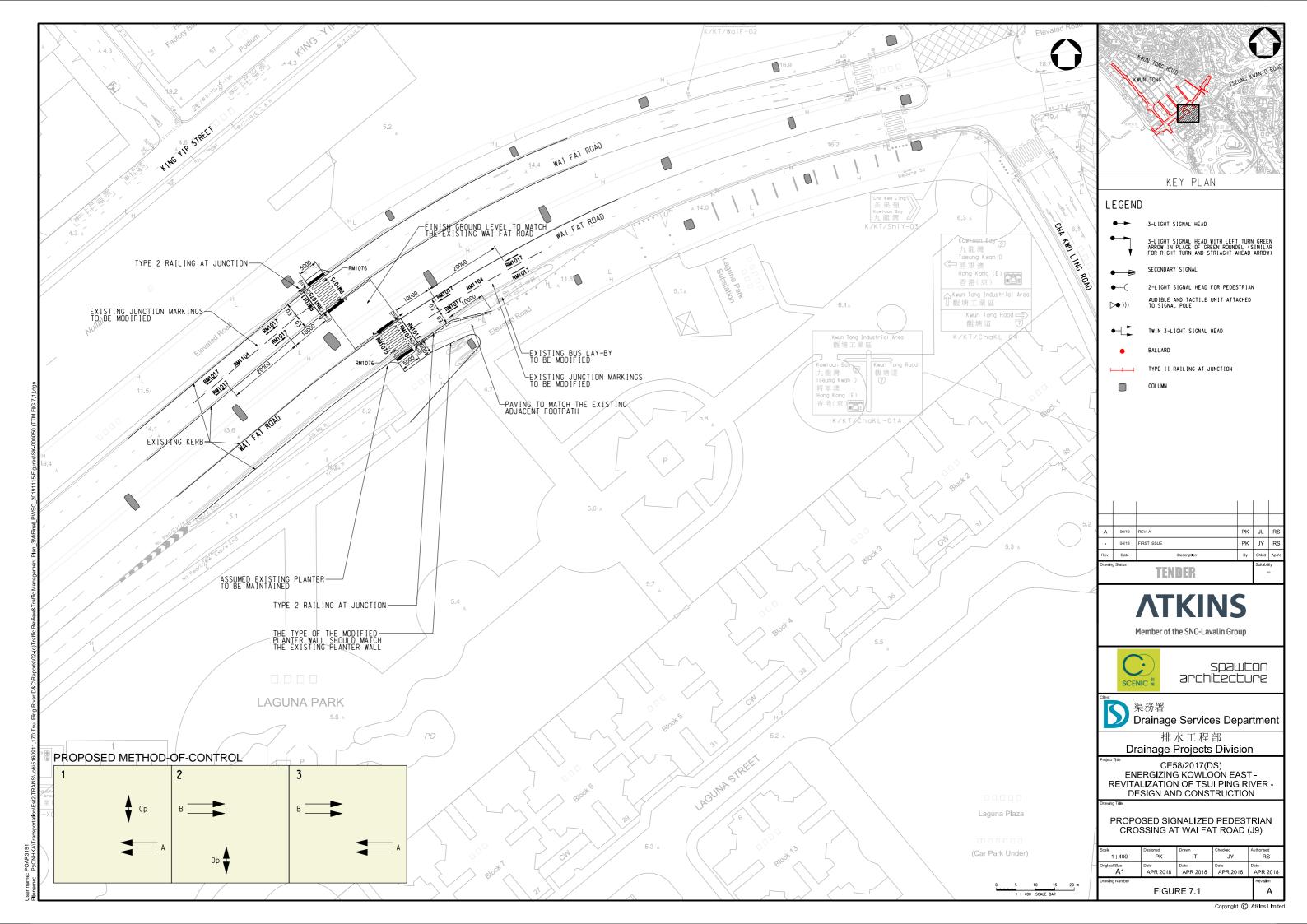


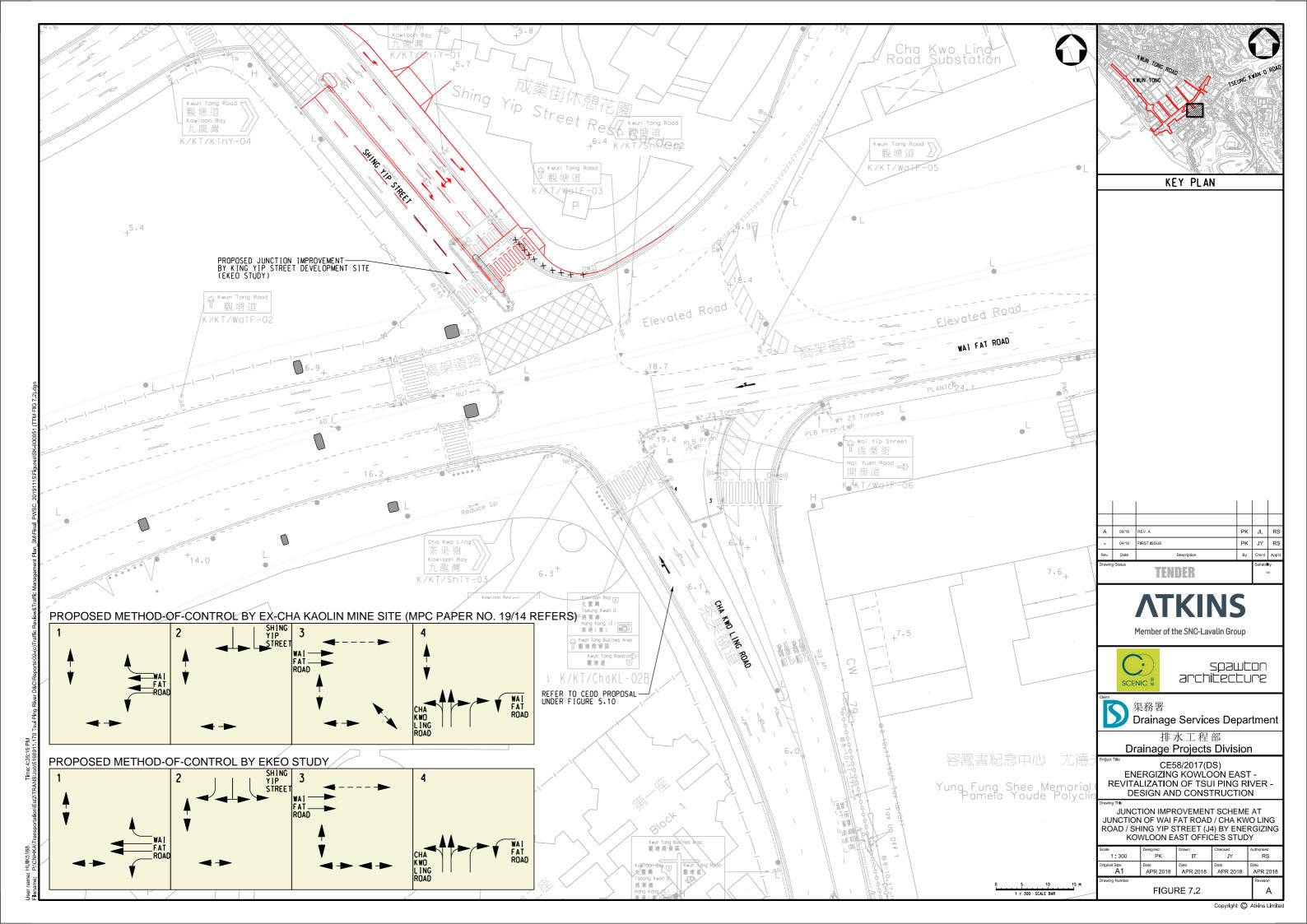


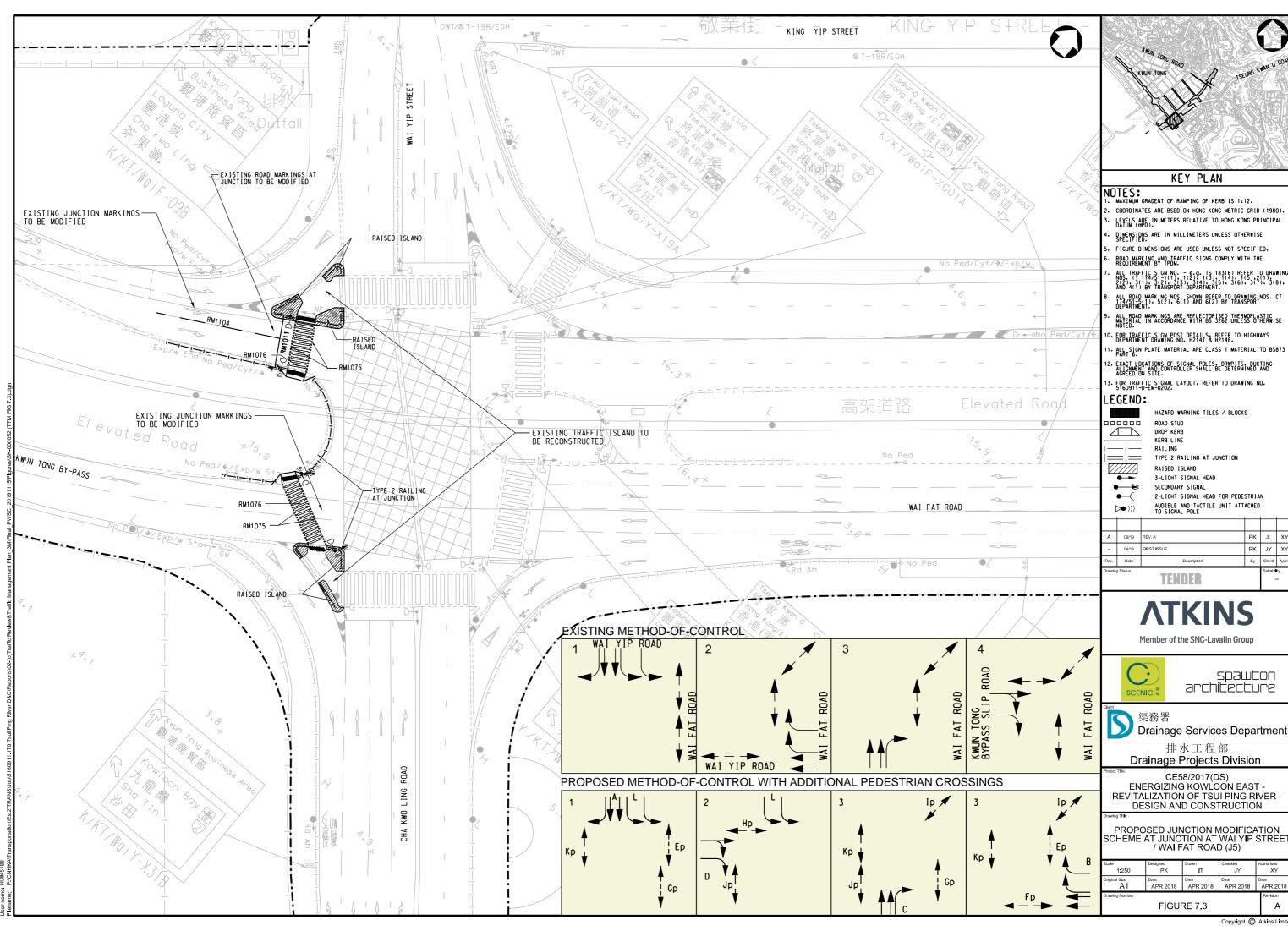


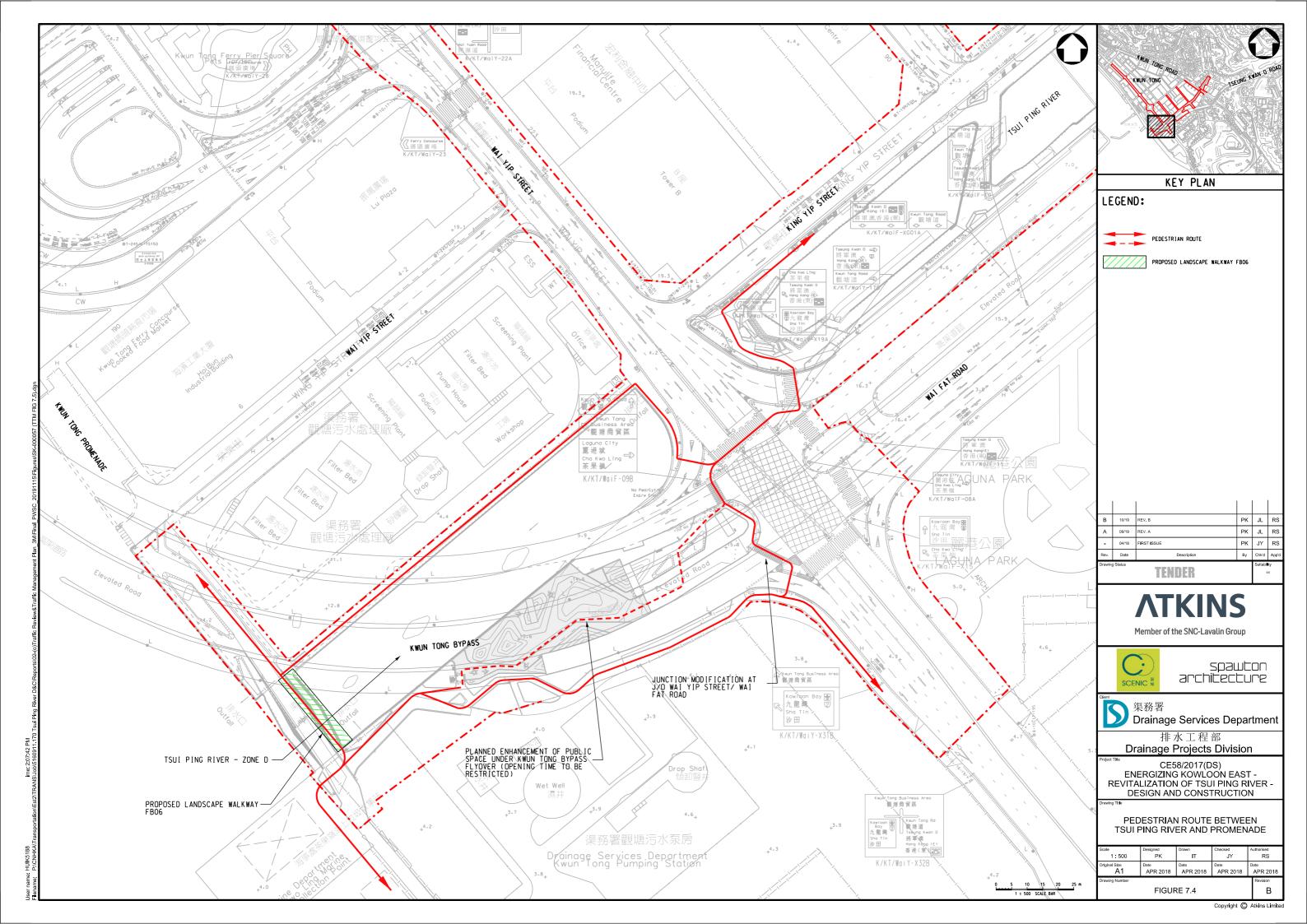


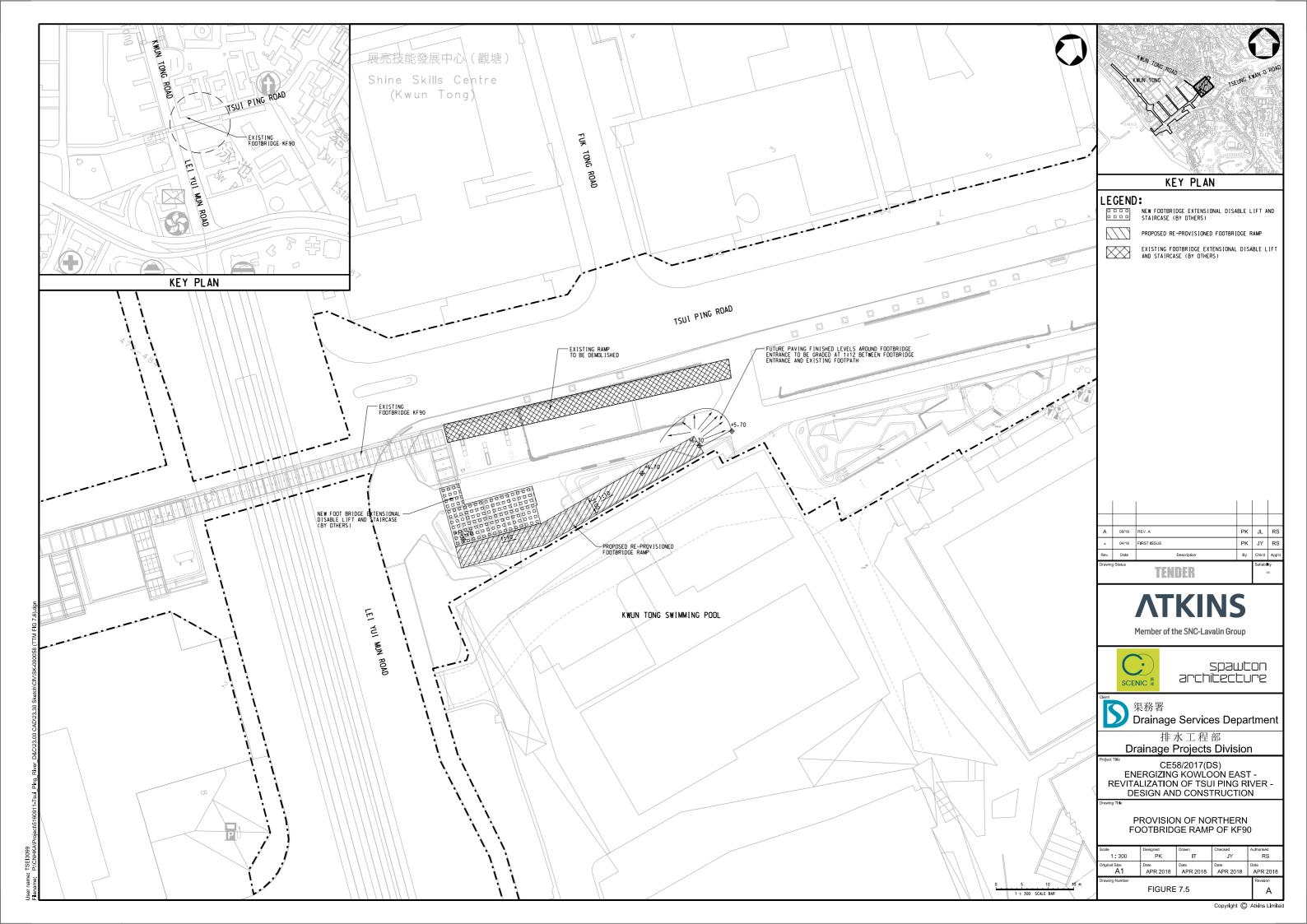


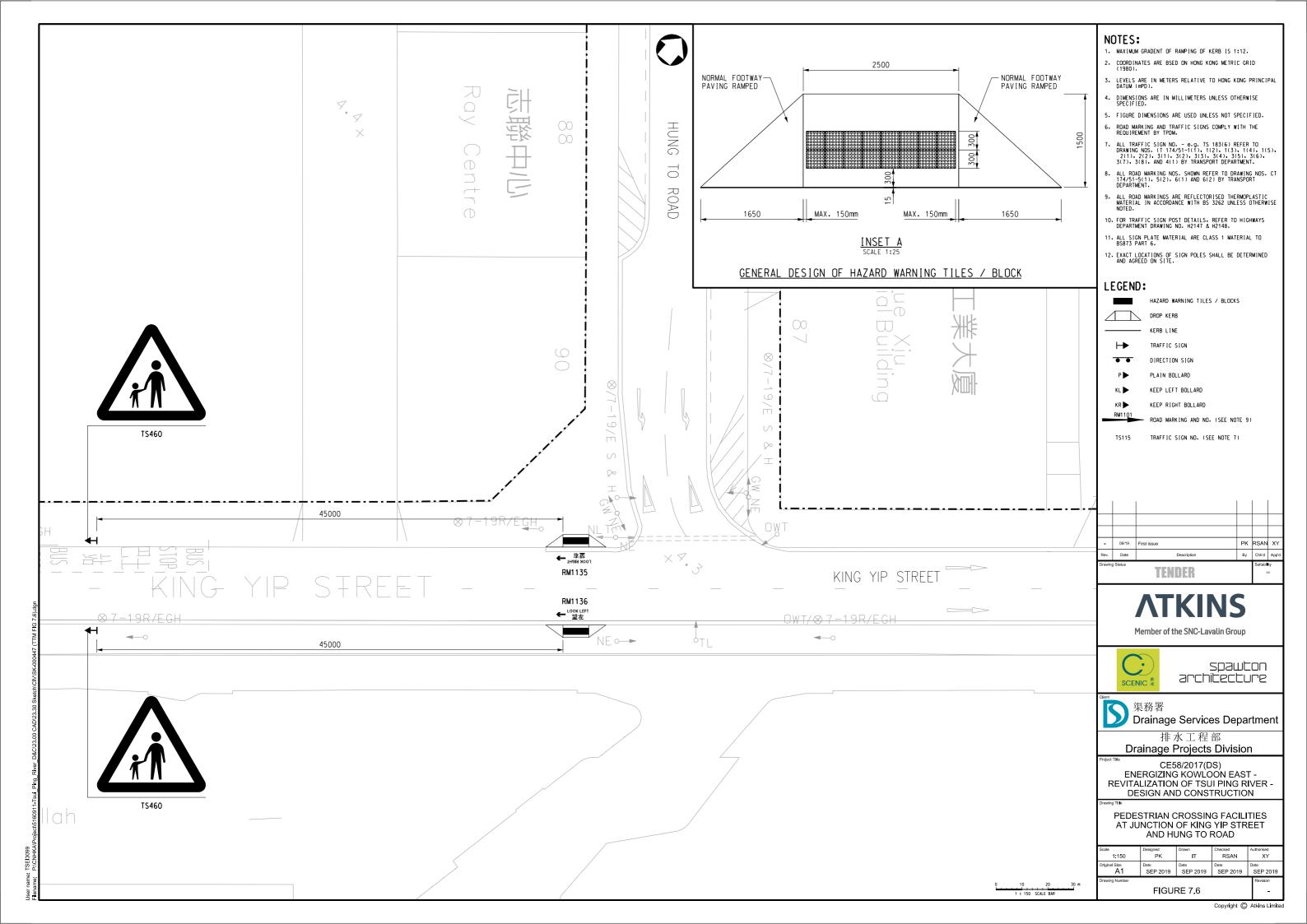


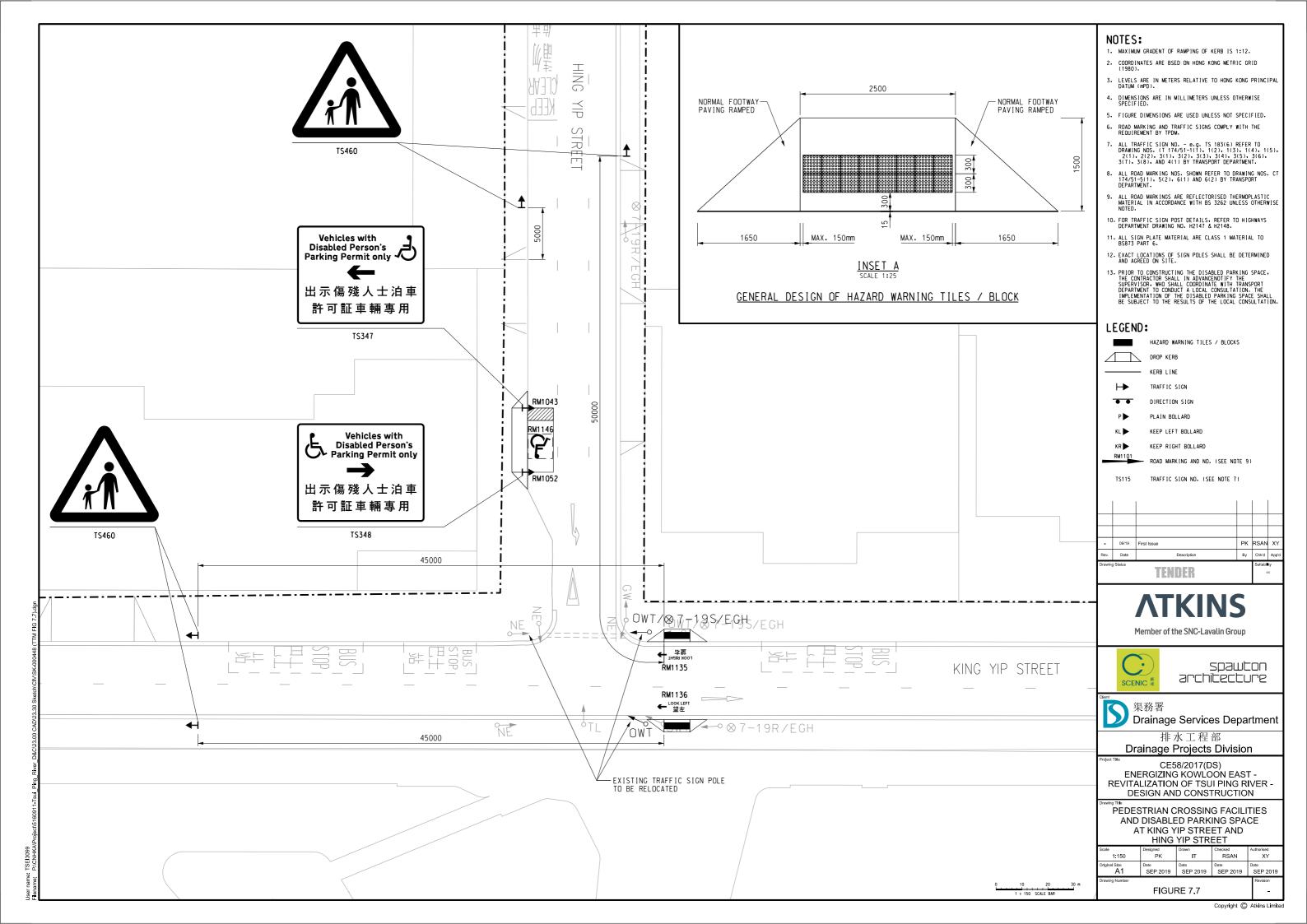


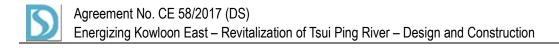












Appendix A

Junction Calculations Sheets

JOB NO. : 5160911 Junction : J1 TSUI PING RD / FUK NING RD / KAI LIM RD Design Year: 2018 Existing Checked by: _____JY Scheme : Designed by: _ PK Traffic Flow (pcu/hr)
AM(PM) 570(650) 40(70) 香港歷史檔案大樓 20(30) FUK NING ROAD 30(30) 觀塘職業訓練中心 570(480) 570(650) STAGE / PHASE DIAGRAM 1A+4A+5p G= IG=7 G=5 G=5 IG=16 G= G= IG=4 IG= 1A+4A+5p G= IG=7 G=5 IG=4 G=5 IG=16 G= IG= G=

Capacity Calculations Phase Stage Lane Nearside Opposed Radius for Gradie					AM Peak				PM Peak				
Stage	Lane Width (m)	Nearside lane? (Y/N)	Opposed turn? (Y/N)	Radius for turning (m)	Gradient in %	Design Flow q (pcu/hr)	Proportion turning (%)	Saturation flow S (pcu/hr)	Flow factor y	Design Flow q (pcu/hr)	Proportion turning (%)	Saturation flow S (pcu/hr)	Flow factor y
Road NB													
1	4.50	Y	N	10		590	3%	1645	0.359	660	2%	1650	0.400
L Road SB													
	4 50	Υ	N			570		1650	0.345	480		1650	0.291
1	5.00	Y	N	10		610	7%	2095	0.291	720	10%	2085	0.345
ad WB													
2	3.00	Y	N	20/25		50	60% / 40%	1435	0.035	60	50% / 50%	1435	0.042
3		5GM +	13FG =	18	sec								
3		5GM +	10FG =	15	sec								
R	Stage Road NB 1 Road SB 1,2 1 ad WB 2	Stage	Stage Lane Width (m) lane? (Y/N) Road NB	Stage	Stage Lane Width (m) w (Y/N) (Y/N) (Y/N) r	Stage Lane Wearside Opposed Radius for turning (m) in % g	Stage	Stage	Stage Lane Width (m) Nearside lane? (Y/N) (Y/N)	Stage Lane Nearside Opposed Radius for turning (m) m % Flow q (pcu/hr) m % flow S (p	Stage Lane Nearside Opposed Radius for turning (m) Flow q (pcu/hr) Flo	Stage Lane Nearside Opposed Radius for turning (m) Flow q (pcu/hr) Flo	Stage Lane Width (m) lane? (Y/N) w w (Y/N) w w (Y/N) w w w (Y/N) w w w (Y/N) w w w (Y/N) w w w w (Y/N) w w w w (Y/N) w w w w w (Y/N) w w w w w w w w w

Notes:	AM Peak	1A+4A+5p	PM Peak	1A+4A+5p
Site factor applied on Tsui Ping Rd SB & Kai Lim Rd to consider bus stop downsteam	Sum of Critical y Y	0.359	Sum of Critical y Y	0.400
Site factor applied on Tsui Ping Rd NB to relect the congested condition	Lost Time L (sec)	36	Lost Time L (sec)	36
	Cycle Time c (sec)	80	Cycle Time c (sec)	80
	Practical Y Ypr	0.495	Practical Y Ypr	0.495
	Reserve Capacity RC	38%	Reserve Capacity RC	24%

Junction :

ATKINS

JOB NO.: ______5160911 Design Year: 2018 KWUN TONG RD/TSUI PING RD / LEI YUE MUN RD Junction : J2 Checked by: ______JY Existing Scheme : Designed by: ___ PK _ Traffic Flow (pcu/hr)
AM(PM) 540(470) 580(650) 290(310) 2580(2850) -> STAGE / PHASE DIAGRAM 3A+4A+7p G= IG=5 G= IG=11 G=6 IG=10 G= IG= G= 3A+4A+7p G= IG=5 G= IG=11 G=6 IG=10 G= IG= G=

Capacity	/ Calculat	ions						AM	Peak		PM Peak				
Phase	Stage	Lane Width (m)	Nearside lane? (Y/N)	Opposed turn? (Y/N)	Radius for turning (m)	Gradient in %	Design Flow q (pcu/hr)	Proportion turning (%)	Saturation flow S (pcu/hr)	Flow factor y	Design Flow q (pcu/hr)	Proportion turning (%)	Saturation flow S (pcu/hr)	Flow factor y	
Lei Yue Mu	ın Road WE		. ,	, ,			/		,				., ,		
4A	2	3.30	Y	N	10		290	100%	1690	0.172	310	100%	1690	0.183	
	g Road EB														
3A	1	3.30	Υ	N	15		580	100%	1770	0.328	650	100%	1770	0.367	
2A	1,3	3.30	N	N			860		2085	0.412	950		2085	0.456	
2B	1,3	3.30	N	N			860		2085	0.412	950		2085	0.456	
2C	1,3	3.30	N	N			860		2085	0.412	950		2085	0.456	
Tsui Ping I	l Road SB														
5A	2	3.30	Υ	N	15		258	100%	1770	0.146	224	100%	1770	0.127	
5B	2	3.30	N	N	20		282	100%	1940	0.145	246	100%	1940	0.127	
6р	1,3		8GM +	10FG =	18	sec									
7p	3		6GM +	8FG =	14	sec									

Notes:	AM Peak	3A+4A+7p	PM Peak	3A+4A+7p
	Sum of Critical y Y	0.499	Sum of Critical y Y	0.551
High Cycle = 130 seconds	Lost Time L (sec)	30	Lost Time L (sec)	30
adopted	Cycle Time c (sec)	130	Cycle Time c (sec)	130
	Practical Y Ypr	0.692	Practical Y Ypr	0.692
	Reserve Capacity RC	39%	Reserve Capacity RC	26%

Junction : ______ J2

ATKINS

JOB NO.: ______5160911 Junction : J2 KWUN TONG RD/TSUI PING RD / LEI YUE MUN RD Design Year: 2023 Scheme : 2023 Design (Construction) - with L/UL Designed by: __ PK _ Checked by: _____JY Traffic Flow (pcu/hr)
AM(PM) 580(500) 610(690) 300(320) 2710(2990) -> STAGE / PHASE DIAGRAM 3A+5A+7p G= IG=6 G= IG=9 G=6 IG=10 G= G= IG= 3A+5A+7p G= IG=6 G= IG=9 G=6 IG=10 G= IG= G=

Stage	Lane Width (m)	Nearside	Opposed				AM Peak				PM Peak			
oad WB	W	lane? (Y/N)	turn? (Y/N)	Radius for turning (m)	Gradient in %	Design Flow q (pcu/hr)	Proportion turning (%)	Saturation flow S (pcu/hr)	Flow factor y	Design Flow q (pcu/hr)	Proportion turning (%)	Saturation flow S (pcu/hr)	Flow factor y	
1000		, ,	, ,			\(\(\frac{1}{2}\)		, ,		, , , , , , , , , , , , , , , , , , ,		,		
2	3.30	Y	N	10		300	100%	1690	0.178	320	100%	1690	0.189	
I ED														
oad EB	3 30	V	N	15		610	100%	1770	0.345	600	100%	1770	0.390	
				15			100%			l	100%		0.390	
													0.478	
1,3	3.30	N	N			903		2085	0.433	997		2085	0.478	
d SB														
2	3.30	Y	N	20		580	100%	1810	0.320	500	100%	1810	0.276	
1.3		8GM +	10FG =	18	sec									
3		6GM +	8FG =	14	sec									
d	1,3	1,3 3.30 1,3 3.30 1,3 3.30 1 SB 2 3.30	1,3 3.30 N 1,3 3.30 N 1,3 3.30 N 2 SB 2 3.30 Y	1,3 3.30 N N N N N N N N N N N N N N N N N N N	1,3 3.30 N N N 1,3 3.30 N N N N N N N N N N N N N N N N N N N	1,3 3.30 N N N 1,3 3.30 N N N N 1,3 3.30 N N N N 1,3 3.30 N N N N 20 1,3 SB 2 3.30 Y N 20 1,3 S S S S S S S S S S S S S S S S S S S	1,3 3.30 N N N 903 1,3 3.30 N N N 904 1,3 3.30 N N N 903 158B 2 3.30 Y N 20 580 1,3 580 1,3 8GM + 10FG = 18 sec	1,3 3.30 N N N 903 1,3 3.30 N N N 904 1,3 3.30 N N N 903 1,3 3.30 N N N 903 138B 2 3.30 Y N 20 580 100% 1,3 1,3 8GM + 10FG = 18 sec	1,3 3.30 N N N 903 2085 1,3 3.30 N N N 904 2085 1,3 3.30 N N N 903 2085 1,3 3.30 N N N N 903 2085 1,3 SB 2 3.30 Y N 20 580 100% 1810	1,3 3.30 N N N 903 2085 0.433 1,3 3.30 N N N 904 2085 0.434 1,3 3.30 N N N 903 2085 0.433 1,3 3.30 N N N N 903 2085 0.433 1,3 3.30 N N N N 903 2085 0.433 1,3 8BB 2 3.30 Y N 20 580 100% 1810 0.320	1,3 3.30 N N N 903 2085 0.433 997 1,3 3.30 N N N 904 2085 0.434 996 1,3 3.30 N N N 903 2085 0.433 997 1,3 3.30 N N N N 903 2085 0.433 997 1,3 3.30 N N N N 903 2085 0.433 997 1,3 3.30 Y N 20 580 100% 1810 0.320 500	1,3 3.30 N N N 903 2085 0.433 997 1,3 3.30 N N N 904 2085 0.434 996 1,3 3.30 N N N 903 2085 0.433 997 1,3 3.30 N N N 903 2085 0.433 997 1,3 3.30 N N N 20 580 100% 1810 0.320 500 100% 100% 1 1	1,3 3.30 N N N 903 2085 0.433 997 2085 1,3 3.30 N N N 904 2085 0.434 996 2085 1,3 3.30 N N N 903 2085 0.433 997 2085 1,3 3.30 N N N 903 2085 0.433 997 2085 1,3 3.30 N N N 20 580 100% 1810 0.320 500 100% 1810 2 3.30 Y N 20 580 100% 1810 0.320 500 100% 1810	

Notes:	AM Peak	3A+5A+7p	PM Peak	3A+5A+7p
	Sum of Critical y Y	0.665	Sum of Critical y Y	0.666
High Cycle = 130 seconds	Lost Time L (sec)	29	Lost Time L (sec)	29
adopted	Cycle Time c (sec)	130	Cycle Time c (sec)	130
	Practical Y Ypr	0.699	Practical Y Ypr	0.699
	Reserve Capacity RC	5%	Reserve Capacity RC	5%

Junction : ______ J2

ATKINS

JOB NO.: 5160911 Design Year: KWUN TONG RD/TSUI PING RD / LEI YUE MUN RD 2023 Junction: J2 2023 Design (Construction) - with L/UL (off-peak) Checked by: _____ JY Scheme : Designed by: ___ PK Traffic Flow (pcu/hr)
AM(PM) 530(0) 560(0) ___ 280(0) 2480(0) STAGE / PHASE DIAGRAM 3A+5A+7p IG=6 G= G= IG=9 G=6 IG=10 G= G= IG= #N/A **Capacity Calculations** Off-Peak (within 10:00 - 16:00 hours) Phase Stage Lane Opposed Radius for Gradient Design Proportion Saturation Flow Design Proportion Saturation Flow Nearside Flow q Width (m) turn? turning (m) turning (%) flow S factor turning (%) flow S lane? Flow q factor (pcu/hr) (Y/N) (Y/N)(pcu/hr) (pcu/hr) (pcu/hr) r g y Lei Yue Mun Road WB 4A 3.30 Ν 280 100% 1690 0.166 10 Kwun Tong Road EB **3A** 3.30 Ν 15 560 100% 1770 0.316 3.30 Ν 827 2085 0.397 **2A** 1,3 Ν 2B 1,3 3.30 Ν Ν 826 2085 0.396 3.30 Ν 827 2085 0.397 Tsui Ping Road SB 5A 3.30 Υ Ν 20 530 100% 1810 0.293 10FG = 8GM + 1,3 18 6p sec 6GM + 8FG = 3 14 **7**p sec Notes: Off Peak 3A+5A+7p Sum of Critical y Y 0.609 Lost Time L (sec) 29 High Cycle = 130 seconds adopted Cycle Time c (sec) 130 Practical Y Ypr 0.699 Reserve Capacity RC 15%

Junction : J2

G=10

3p+2A

IG=

G=

IG=14

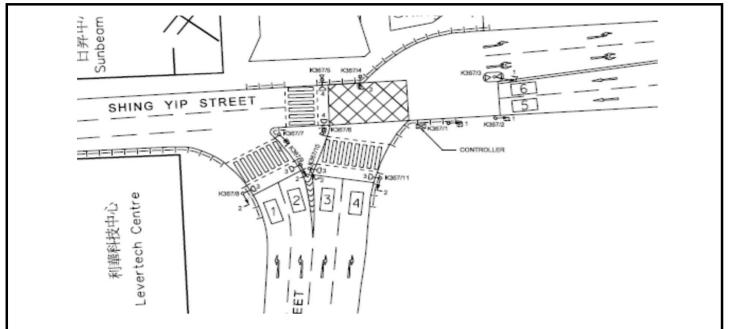
			JOB N	IO. :516	60911
Junction : <u>J3</u>	SHING YIP ST/KING YIP ST		Design Year:	2018	
Scheme :	Exisitng	Designed by:	PK	Checked by:	JY
和華科技中心 Levertech Centre Levertech Centr	K367/3 (30) 1 (367/4) (367/4			cu/hr) ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	N ▼ ✓ 340(270)
STAGE / PHASE DIAGRAM					
SHING YIP ST D	2 25-6 3 3 3 3 3 3 3 3 3 4 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	4 4 2-1-2 1-2 1-3-4	G=	5 IG=	G=

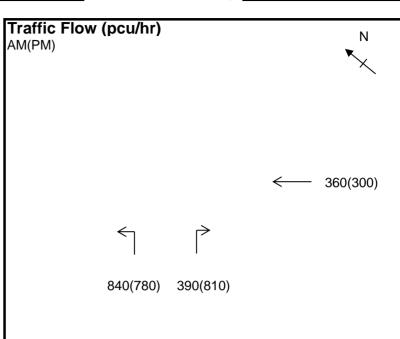
G=

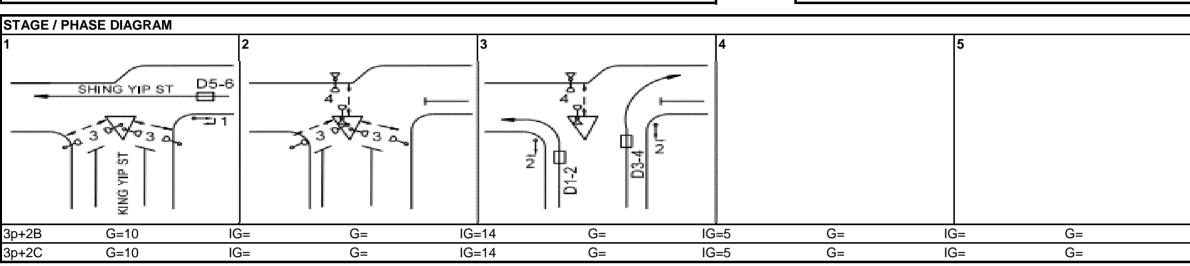
IG=5

Capacity Calculations							AM Peak				PM Peak			
Phase	Stage	Lane	Nearside	Opposed	Radius for	Gradient	Design	Proportion	Saturation	Flow	Design	Proportion	Saturation	Flow
		Width (m)	lane?	turn?	turning (m)	in %	Flow q	turning (%)	flow S	factor	Flow q	turning (%)	flow S	factor
		w	(Y/N)	(Y/N)	r	g	(pcu/hr)	f	(pcu/hr)	У	(pcu/hr)	f	(pcu/hr)	У
Shing Yip S	Street WB								,					<u> </u>
1A	1	3.50	Υ	N			164		1375	0.119	130		1375	0.095
1B	1	3.50	N	N			176		1475	0.119	140		1475	0.095
King Yip St														
2A	3	3.50	Υ	N	20		381	100%	1280	0.298	353	100%	1280	0.276
2B	3	3.50	N	N	30		419	100%	1405	0.298	387	100%	1405	0.275
2C	3	3.50	N	N	30		187	100%	1805	0.104	390	100%	1805	0.216
2D	3	3.50	Υ	N	25		173	100%	1670	0.104	360	100%	1670	0.216
			406:	1050										
3p	1,2		10GM +	12FG =	22	sec								
4p	2,3		7GM +	8FG =	15	sec								

Notes:	AM Peak	3p+2B	PM Peak	3p+2A
Considered the numerour run-in out, site factor have been appiled at King Yip St	Sum of Critical y Y	0.298	Sum of Critical y Y	0.276
and ShingYip St.	Lost Time L (sec)	28	Lost Time L (sec)	28
	Cycle Time c (sec)	140	Cycle Time c (sec)	140
High Cycle = 140 seconds adopted	Practical Y Ypr	0.720	Practical Y Ypr	0.720
	Reserve Capacity RC	141%	Reserve Capacity RC	161%


Junction : J3


G=


IG=

G=

ATKINS

Capacity	Calculat	ions						AM I	Peak			PM I	PM Peak			
Phase	Stage	Lane	Nearside	Opposed	Radius for	Gradient	Design	Proportion	Saturation	Flow	Design	Proportion	Saturation	Flow		
		Width (m)	lane?	turn?	turning (m)	in %	Flow q	turning (%)	flow S	factor	Flow q	turning (%)	flow S	factor		
		w	(Y/N)	(Y/N)	r	g	(pcu/hr)	f	(pcu/hr)	У	(pcu/hr)	f	(pcu/hr)	У		
Shing Yip S	Street WB															
1A	1	3.50	Υ	N			174		1375	0.127	145		1375	0.105		
1B	1	3.50	N	N			186		1475	0.126	155		1475	0.105		
 King Yip St	reet NR															
2A	3	3.50	Υ	N	20		400	100%	1280	0.313	372	100%	1280	0.291		
2B	3	3.50	N	N	30		440	100%	1405	0.313	408	100%	1405	0.290		
2C	3	3.50	N	N	30		390	100%	1405	0.278	810	100%	1405	0.577		
3p	1,2		10GM +	12FG =	22	sec										
4p	2,3		7GM +	8FG =	15	sec										
- 17	_,_			J. U												
	_															

Notes:	AM Peak	3p+2B	PM Peak	3p+2C
Considered the numerour run-in out, site factor have been appiled at King Yip St	Sum of Critical y Y	0.313	Sum of Critical y Y	0.577
and ShingYip St.	Lost Time L (sec)	28	Lost Time L (sec)	28
	Cycle Time c (sec)	140	Cycle Time c (sec)	140
High Cycle = 140 seconds adopted	Practical Y Ypr	0.720	Practical Y Ypr	0.720
	Reserve Capacity RC	130%	Reserve Capacity RC	25%
	· · · · · · · · · · · · · · · · · · ·		·	

Junction : J3

ATKINS

JOB NO. : ______5160911 Junction: J4 CHA KWO LING RD / SHING YIP ST / WAI FAT RD Design Year: 2018 Checked by: _____JY Scheme : _____ Existing Designed by: ___ PK Traffic Flow (pcu/hr)
AM(PM) 330(270) 540(620) 330(270) 220(390) 140(130) 130(360) **-** 60(40) 180(180) 150(260) STAGE / PHASE DIAGRAM 3A+5B+9P IG=5 G= IG=15 G=7 IG=11 G= IG= G= 2A+5B+9P+4A G= IG=5 G= IG=15 G=7 IG=11 G= IG=7 G=

Capacity	Capacity Calculations					AM Peak				PM Peak				
Phase	Stage	Lane Width (m)	Nearside lane? (Y/N)	Opposed turn? (Y/N)	Radius for turning (m)	Gradient in %	Design Flow q (pcu/hr)	Proportion turning (%)	Saturation flow S (pcu/hr)	Flow factor y	Design Flow q (pcu/hr)	Proportion turning (%)	Saturation flow S (pcu/hr)	Flow factor y
Wai Fat Ro	ad EB		(' '	(' /		<u> </u>	(1 /		(1 - 1 - 1		(1)		,	
1A	3	3.50	Υ	N			72		1965	0.037	126		1965	0.064
1B	3	3.50	N	N			78		2105	0.037	134		2105	0.064
Wai Fat Ro	l oad WB													
3A	1,4	5.00	Υ	N	20		330	100%	985	0.335	270	100%	985	0.274
2A	1	3.00	N	N			256		1850	0.138	294		1850	0.159
2B	1	3.00	N	N			284		2055	0.138	326		2055	0.159
2C	1	3.00	N	N	30		280	100%	1955	0.143	230	100%	1955	0.118
Cha Kwo L	 _ing Road N	lB												
4A	4	3.30	Υ	N	15		180	100%	1770	0.102	180	100%	1770	0.102
4B	4	3.30	N	N	20		109	45%	2015	0.054	92	57%	2000	0.046
4C	4	3.30	N	Υ	15		91	100%	1685	0.054	78	100%	1685	0.046
Shing Yip	l Street SB													
5A	2	3.00	Υ	N	15		168	100%	1740	0.097	361	100%	1740	0.207
5B	2	3.00	N	N	20/15		182	29% / 71%	1880	0.097	389	7% / 93%	1870	0.208
6р	1,2,3		5GM +	12FG =	17	sec								
7p	1,3,4		5GM +	9FG =	14	sec								
8p	1,2,4		5GM +	9FG =	14	sec								
9p	3		7GM +	9FG =	16	sec								
10p	2,3 2,3		5GM + 5GM +	6FG = 12FG =	11 17	sec								
11p	2,3		5GIVI +	12FG =	17	sec								

Notes:	AM Peak	3A+5B+9P	PM Peak	2A+5B+9P+4A
Site factor applied on Wai Fat Road WB for Left-turn traffic	Sum of Critical y Y	0.432	Sum of Critical y Y	0.469
	Lost Time L (sec)	36	Lost Time L (sec)	42
High cycle 140sec adopted	Cycle Time c (sec)	140	Cycle Time c (sec)	140
	Practical Y Ypr	0.669	Practical Y Ypr	0.630
	Reserve Capacity RC	55%	Reserve Capacity RC	34%

Junction : J

ATKINS

					JO	B NO. : .		5160911	
Junction : <u>J5</u>	WAI YIP ST	/ WAI FAT RE)		Design Year:		201	18	
Scheme :	Exis	ting	Desi	gned by:	PK	C	checked by: _	J	Y
	And	COTATE CO	, ROM		Traffic Flo AM(PM) 190(120) 480(420)	w (pcu/hr) 180(360)		↑	N 180(210) 640(520) 260(390)
STAGE / PHASE DIA	AGRAM								
	7	3	7				5		
1B+2C+3C+4 G= 1B+2C+3C+4B G=	IG=8 IG=8	G= IG=6 G= IG=6		IG=8	G= G=	IG:		G= G=	

Capacity	Capacity Calculations						AM Peak			PM Peak				
Phase	Stage	Lane Width (m)	Nearside lane? (Y/N)	Opposed turn?	Radius for turning (m)	Gradient in %	Design Flow q (pcu/hr)	Proportion turning (%)	Saturation flow S (pcu/hr)	Flow factor y	Design Flow q (pcu/hr)	Proportion turning (%)	Saturation flow S (pcu/hr)	Flow factor
Wai Yip Str	eet SB		, ,				,		, ,	<u> </u>	,		" ,	
1A	1	3.30	Υ	N	30		155	100%			155	100%		
1B	1	3.30	N	N	35		405	100%	2000	0.203	475	100%	2000	0.238
1C	1	3.20	N	N			50				50			
1D	1	3.20	N	N			130				130			-
1E	1	3.20	N	N	15		350	51%	1975	0.177	380	95%	1895	0.201
Wai Fat Str	eet WB													
2A	2	3.60	N	N			130		2115	0.061	195		2115	0.092
2B	2	3.60	N	N			130		2115	0.061	195		2115	0.092
2C	2	3.50	N	N	20		408	100%	1960	0.208	359	100%	1960	0.183
2D	2	3.50	N	N	15		75	100%			75	100%		-
2E	2	3.50	N	N	5		337	100%	1620	0.208	296	100%	1620	0.183
Wai Yip Str	eet NB													
3A	3	3.80	N	N			125		2135	0.059	120		2135	0.056
3B	3	3.80	N	N			125		2135	0.059	120		2135	0.056
3C	3	3.80	N	N	10		250	100%	1855	0.135	280	100%	1855	0.151
Wai Fat Str	eet EB													
4A	4	3.50	N	N	20		328	42%	1835	0.179	263	54%	1820	0.145
4B	4	3.50	N	N	15		342	100%	1915	0.179	277	100%	1915	0.145
5p	1,2		5GM +	7FG =	12	sec								
6р	2		11GM +	10FG =	21	sec								
7p	1,3,4		7GM +	14FG =	21	sec								
8p	4		10GM +	9FG =	19	sec								
9p	2,3,4		5GM +	9FG =	14	sec								
								1						

lotes: Cycle time: 140 sec (HCL) adopted	AM Peak	1B+2C+3C+4A	PM Peak	1B+2C+3C+
lare Lane effect have been considered at WYS SB left-turn traffic	Sum of Critical y Y	0.724	Sum of Critical y Y	0.716
lare Lane effect have been considered at WYS SB straight-ahead traffic	Lost Time L (sec)	24	Lost Time L (sec)	24
lare Lane effect have been considered at WYS WB U-turn traffic	Cycle Time c (sec)	140	Cycle Time c (sec)	140
unction Improvement from Ex-Cha Kwo Ling Kaolin Mine Site in MPC paper no. 19/14 considered	Practical Y Ypr	0.746	Practical Y Ypr	0.746
anti-clockwise MOC)	Reserve Capacity RC	3%	Reserve Capacity RC	4%

JOB NO. : _____ 5160911 WAI YIP ST / WAI FAT RD Junction: J5 Design Year: 2023 Checked by: Scheme : Design with TTMS at Wai Fat Rd (Figure 5.9_upper Part) Designed by: _ JΥ PK Traffic Flow (pcu/hr)
AM(PM) 210(40) 580(660) 390(220) **—** 180(220) _ 860(760) 210(130) 510(450) ← 300(430) 290(270) 280(300) STAGE / PHASE DIAGRAM A1 A2 A3 L2 L1 Hp ←------| L2 L1 D2 . ↓Gp . ↓Gp C2 C3 Fp A3+D1+C3+l G= G= G= IG=5 G= IG=5 IG=16 IG=5 G= IG=5 G= IG=5 G= IG=5 A3+D1+C3+B1 G= IG=16 G= G=

Capacity	city Calculations				AM Peak			PM Peak						
Phase	Stage	Lane	Nearside	Opposed	Radius for	Gradient	Design	Proportion	Saturation	Flow	Design	Proportion	Saturation	Flow
		Width (m)	lane?	turn?	turning (m)	in %	Flow q	turning (%)	flow S	factor	Flow q	turning (%)	flow S	factor
		w	(Y/N)	(Y/N)	r	g	(pcu/hr)	f	(pcu/hr)	У	(pcu/hr)	f	(pcu/hr)	У
Wai Yip Str	eet SB													
L1	1,2	3.30	Υ	N	30		155	100%			155	100%		
L2	1,2	3.30	N	N	35		425	100%	2000	0.213	505	100%	2000	0.253
A 1	1	3.20	N	N			50				50			
A2	1	3.20	N	N			130				130			
A3	1	3.20	N	N	15		400	48%	1980	0.202	420	90%	1905	0.220
Wai Fat Str	eet WB													
B1	4	3.60	N	N			300		2115	0.142	430		2115	0.203
B3	4	3.50	N	N	20		430	100%	1960	0.219	375	100%	1960	0.191
B4	4	3.50	N	N	15		75	100%			75	100%		
B5	4	3.50	N	N	5		355	100%	1620	0.219	310	100%	1620	0.191
Wai Yip Str	l reet NB													
C1	3	3.80	N	N			145		2135	0.068	135		2135	0.063
C2	3	3.80	N	N			145		2135	0.068	135		2135	0.063
C3	3	3.80	N	N	10		280	100%	1855	0.151	300	100%	1855	0.162
Wai Fat Str	eet EB													
D1	2	3.30	N	N	20		353	41%	1820	0.194	283	54%	1805	0.157
D2	2	3.30	N	N	15		367	100%	1895	0.194	297	100%	1895	0.157
Ер	1,4		5GM +	7FG =	12	sec								
Fp	4		11GM +	10FG =	21	sec								
Gp	1,2,3		7GM +	14FG =	21	sec								
Нр	2		10GM +	9FG =	19	sec								
lp	3,4		5GM +	9FG =	14	sec								

notes:	Cycle time: 140 sec (HCL) adopted
Flare Lane	effect have been considered at WYS SB left-turn traffic
Flare Lane	effect have been considered at WYS SB straight-ahead traffic
Flare Lane	effect have been considered at WYS WB U-turn traffic
Junction Impro (anti-clockwis	ovement from Ex-Cha Kwo Ling Kaolin Mine Site in MPC paper no. 19/14 considered the MOC)

AM Peak	A3+D1+C3+B3	PM Peak	A3+D1+C3+B1
Sum of Critical y Y	0.766	Sum of Critical y Y	0.742
Lost Time L (sec)	27	Lost Time L (sec)	27
Cycle Time c (sec)	140	Cycle Time c (sec)	140
Practical Y Ypr	0.726	Practical Y Ypr	0.726
Reserve Capacity RC	-5%	Reserve Capacity RC	-2%

Junction:	J5

JOB NO. : _____ 5160911 WAI YIP ST / WAI FAT RD Junction: J5 Design Year: 2023 Checked by: Scheme : Design with TTMS at Wai Fat Rd (Figure 5.9_lower Part) Designed by: JΥ PK Traffic Flow (pcu/hr)
AM(PM) 210(40) 390(220) 580(660) **—** 180(220) _ 860(760) 210(130) 510(450) ← 300(430) 290(270) 280(300) STAGE / PHASE DIAGRAM A1 A2 A3 L2 L1 Hp ←------| L2 L1 . ↓Gp . ↓Gp C1 C2 C3 Fp A3+D1+C3+l G= G= G= G= IG=5 IG=5 IG=16 IG=5 G= IG=5 G= IG=5 G= G= IG=5 A3+D1+C3+B5 G= IG=16 G=

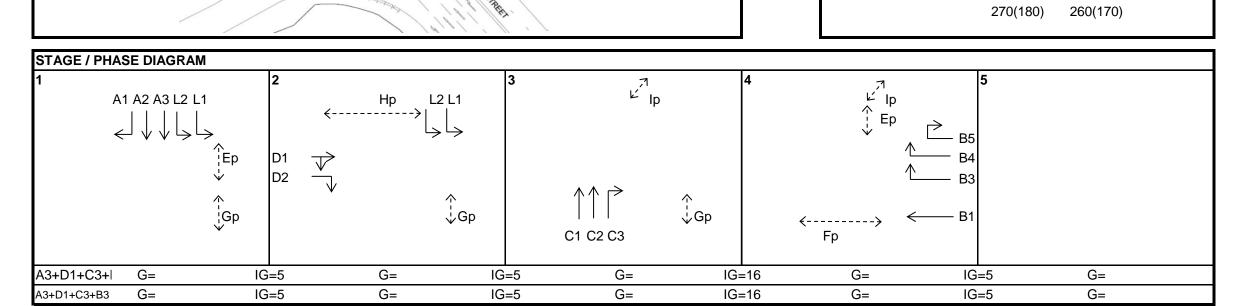
Capacity	Calcula	tions						AM I	Peak			PM I	Peak	
Phase	Stage	Lane Width (m)	Nearside lane? (Y/N)	Opposed turn?	Radius for turning (m)	Gradient in %	Design Flow q (pcu/hr)	Proportion turning (%)	Saturation flow S (pcu/hr)	Flow factor	Design Flow q (pcu/hr)	Proportion turning (%)	Saturation flow S (pcu/hr)	Flow factor y
Wai Yip Str	eet SB		, ,				, , ,		,	<u> </u>			/	<u>-</u>
L1	1,2	3.30	Υ	N	30		155	100%			155	100%		
L2	1,2	3.30	N	N	35		425	100%	2000	0.213	505	100%	2000	0.253
A 1	1	3.20	N	N			50				50			
A2	1	3.20	N	N			130				130			
А3	1	3.20	N	N	15		400	48%	1980	0.202	420	90%	1905	0.220
Wai Fat Str	eet WB													
B1	4	3.60	N	N			150		2115	0.071	215		2115	0.102
B2	4	3.60	N	N			150		2115	0.071	215		2115	0.102
B3	4	3.50	N	N	20		430	100%	1960	0.219	375	100%	1960	0.191
B4	4	3.50	N	N	15		75	100%			75	100%		
B5	4	3.50	N	N	5		355	100%	1620	0.219	310	100%	1620	0.191
Wai Yip Str	eet NB													
C1	3	3.80	N	N			145		2135	0.068	135		2135	0.063
C2	3	3.80	N	N			145		2135	0.068	135		2135	0.063
C3	3	3.80	N	N	10		280	100%	1855	0.151	300	100%	1855	0.162
Wai Fat Str	eet EB													
D1	2	3.30	N	N	15		720	71%	1750	0.411	580	78%	1740	0.333
Ep	1,4		5GM +	7FG =	12	sec								
Fp	4		11GM +	10FG =	21	sec								
Gp	1,2,3		7GM +	14FG =	21	sec								
Нр	2		10GM +	9FG =	19	sec								
lp	3,4		5GM +	9FG =	14	sec								

Notes:	Cycle time: 140 sec (HCL) adopted
Flare Lane	effect have been considered at WYS SB left-turn traffic
Flare Lane	effect have been considered at WYS SB straight-ahead traffic
Flare Lane	effect have been considered at WYS WB U-turn traffic
Junction Impro	ovement from Ex-Cha Kwo Ling Kaolin Mine Site in MPC paper no. 19/14 considered the MOC)

AM Peak	A3+D1+C3+B3	PM Peak	A3+D1+C3+B5
Sum of Critical y Y	0.984	Sum of Critical y Y	0.907
Lost Time L (sec)	27	Lost Time L (sec)	27
Cycle Time c (sec)	140	Cycle Time c (sec)	140
Practical Y Ypr	0.726	Practical Y Ypr	0.726
Reserve Capacity RC	-26%	Reserve Capacity RC	-20%

Junction:	J5
Janotion .	

ATKINS


____ 790(520)

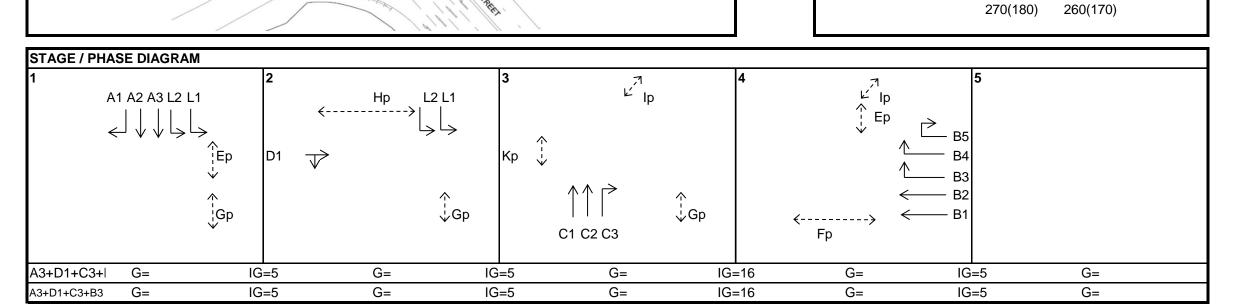
← 270(180)

	IO GIGHAL GALGGEATION GITLET				<i>,</i> , , , , ,		
			JOE	8 NO. :_		5160911	
Junction :	WAI YIP ST / WAI FAT RD		Design Year: _		202	23	
Scheme : _	Design with TTMS at Wai Fat Rd (Figure 5.9_upper Part)_offpeak	Designed by:	PK	Che	ecked by: _	J'	Y
	10 156 157 157 157 157 157 157 157 157 157 157		Traffic Flow AM(PM)		360(240)	530(350) 	√ N 170(110)

190(130)

460(310)

Capacity	/ Calcula	tions					Off-P	eak (within 10	0:00 - 16:00 h	ours)	Off-P	eak (within 20	0:00 - 06:00 h	ours)
Phase	Stage	Lane Width (m)	Nearside lane? (Y/N)	Opposed turn?	Radius for turning (m)	Gradient in %	Design Flow q (pcu/hr)	Proportion turning (%)	Saturation flow S (pcu/hr)	Flow factor y	Design Flow q (pcu/hr)	Proportion turning (%)	Saturation flow S (pcu/hr)	Flow factor
Wai Yip Stı	reet SB		,	,		<u> </u>	, , , , , , , , , , , , , , , , , , ,		(1 /	•	, ,		, ,	
 L1	1,2	3.30	Υ	N	30		155	100%			155	100%		-
L2	1,2	3.30	N	N	35		375	100%	2000	0.188	195	100%	2000	0.098
A 1	1	3.20	N	N			50				50			
A2	1	3.20	N	N			130				130			
A3	1	3.20	N	N	15		360	50%	1975	0.182	180	67%	1945	0.093
Wai Fat Stı	l reet WB													
B1	4	3.60	N	N			270		2115	0.128	180		2115	0.085
В3	4	3.50	N	N	20		392	100%	1960	0.200	244	100%	1960	0.124
B4	4	3.50	N	N	15		75	100%			75	100%		
B5	4	3.50	N	N	5		323	100%	1620	0.199	201	100%	1620	0.124
Wai Yip Stı	reet NB													
C1	3	3.80	N	N			135		2135	0.063	90		2135	0.042
C2	3	3.80	N	N			135		2135	0.063	90		2135	0.042
C3	3	3.80	N	N	10		260	100%	1855	0.140	170	100%	1855	0.092
Wai Fat Stı	reet EB													
D1	2	3.30	N	N	20		319	40%	1820	0.175	216	40%	1820	0.119
D2	2	3.30	N	N	15		331	100%	1895	0.175	224	100%	1895	0.118
Ер	1,4		5GM +	7FG =	12	sec								
Fp	4		11GM +	10FG =	21	sec								
Gp	1,2,3		7GM +	14FG =	21	sec								
Нр	2		10GM +	9FG =	19	sec								
lp	3,4		5GM +	9FG =	14	sec								
							-				1			


Notes: Cycle time: 140 sec (HCL) adopted	Off Peak (10:00 - 16:00 hours)	A3+D1+C3+B3	Off Peak (20:00 - 06:00 hours)	A3+D1+C3+B3
Flare Lane effect have been considered at WYS SB left-turn traffic	Sum of Critical y Y	0.698	Sum of Critical y Y	0.427
Flare Lane effect have been considered at WYS SB straight-ahead traffic	Lost Time L (sec)	27	Lost Time L (sec)	27
Flare Lane effect have been considered at WYS WB U-turn traffic	Cycle Time c (sec)	140	Cycle Time c (sec)	140
	Practical Y Ypr	0.726	Practical Y Ypr	0.726
(anti-clockwise MOC)	Reserve Capacity RC	4%	Reserve Capacity RC	70%

ATKINS

← 270(180)

JOB NO. : _____ 5160911 WAI YIP ST / WAI FAT RD Junction : J5 Design Year: ___ 2023 Scheme : Design with TTMS at Wai Fat Rd (Figure 5.9_lower Part) (off-peak) Designed by: _ Checked by: JΥ PK Traffic Flow (pcu/hr)
AM(PM) 180(60) 530(350) 360(240) \leftarrow → 170(110) __ 790(520) 190(130)

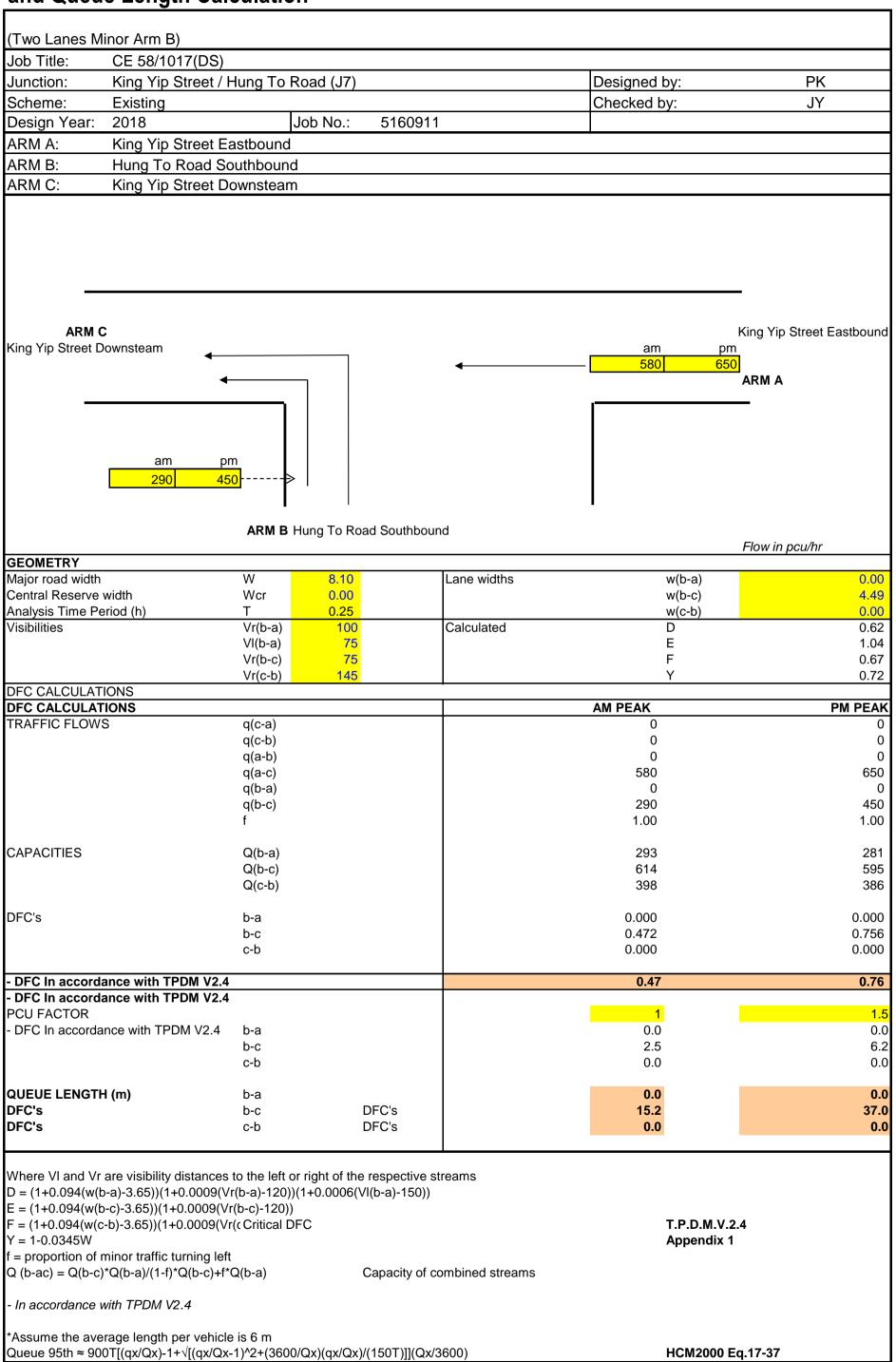
460(310)

Capacity	/ Calcula	tions					Off-P	eak (within 1	0:00 - 16:00 h	ours)	Off-P	Peak (within 2	0:00 - 06:00 h	ours)
Phase	Stage	Lane Width (m)	Nearside lane? (Y/N)	Opposed turn? (Y/N)	Radius for turning (m)	Gradient in %	Design Flow q (pcu/hr)	Proportion turning (%)	Saturation flow S (pcu/hr)	Flow factor y	Design Flow q (pcu/hr)	Proportion turning (%)	Saturation flow S (pcu/hr)	Flow factor
Wai Yip Stı	reet SB		,	, ,			, ,		· · /		, ,		,	
L1	1,2	3.30	Υ	N	30		155	100%			155	100%		
L2	1,2	3.30	N	N	35		375	100%	2000	0.188	195	100%	2000	0.098
A1	1	3.20	N	N			50				50			
A2	1	3.20	N	N			130				130			
А3	1	3.20	N	N	15		360	50%	1975	0.182	180	67%	1945	0.093
Wai Fat Stı	reet WB													
B1	4	3.60	N	N			135		2115	0.064	90		2115	0.043
B2	4	3.60	N	N			135		2115	0.064	90		2115	0.043
B3	4	3.50	N	N	20		392	100%	1960	0.200	244	100%	1960	0.124
B4	4	3.50	N	N	15		75	100%			75	100%		
B5	4	3.50	N	N	5		323	100%	1620	0.199	201	100%	1620	0.124
Wai Yip Stı														
C1	3	3.80	N	N			135		2135	0.063	90		2135	0.042
C2	3	3.80	N	N			135		2135	0.063	90		2135	0.042
C3	3	3.80	N	N	10		260	100%	1855	0.140	170	100%	1855	0.092
Wai Fat Stı	reet EB													
D1	2	3.30	N	N	15		650	71%	1750	0.371	440	70%	1755	0.251
Ер	1,4		5GM +	7FG =	12	sec								
Fp	4		11GM +	10FG =	21	sec								
Gp	1,2,3		7GM +	14FG =	21	sec								
Нр	2		10GM +	9FG =	19	sec								
lp	3,4		5GM +	9FG =	14	sec								

Notes: Cycle time: 140 sec (HCL) adopted	Off-Peak (within 10:00 - 16:00 hours)	A3+D1+C3+B3	Off-Peak (within 20:00 - 06:00 hours)	A3+D1+C3+B3
Flare Lane effect have been considered at WYS SB left-turn traffic	Sum of Critical y Y	0.894	Sum of Critical y Y	0.559
Flare Lane effect have been considered at WYS SB straight-ahead traffic	Lost Time L (sec)	27	Lost Time L (sec)	27
Flare Lane effect have been considered at WYS WB U-turn traffic	Cycle Time c (sec)	140	Cycle Time c (sec)	140
	Practical Y Ypr	0.726	Practical Y Ypr	0.726
(anti-clockwise MOC)	Reserve Capacity RC	-19%	Reserve Capacity RC	30%

JOB NO. : ______ 5160911 Junction: J6 LEI YUE MUN RD/CHA KWO LING RD Design Year: 2018 Existing PK Checked by: Scheme : ___ Designed by: __ Traffic Flow (pcu/hr)
AM(PM) 1820(1640) 2170(2070) STAGE / PHASE DIAGRAM W LEI YUE MUN RD 1B+2C IG=6 IG=10 G= G= G= G= IG= IG= 1B+2C G= IG=6 G= IG=10 G= IG= G= IG= G= **Capacity Calculations AM Peak** PM Peak Design Design Phase Stage Opposed Radius for Gradient Proportion Saturation Flow Proportion Saturation Flow Lane Nearside Flow **q** Width (m) turning (m) turning (%) flow S turning (%) flow S lane? turn? Flow q factor factor (Y/N)(pcu/hr) (Y/N)(pcu/hr) (pcu/hr) (pcu/hr) r g y Lei Yue Mun Road NB 3.00 Ν 431 1915 0.225 389 1915 0.203

11 17		0.00					II 101		1010	0.220	11 000	1	1010	0.200
1B	1	3.00	N	N			463		2055	0.225	417		2055	0.203
1C	1	3.00	N	N			463		2055	0.225	417		2055	0.203
1D	1	3.00	N	N			463		2055	0.225	417		2055	0.203
Cha Kwo	Ling Road E	В												
2A	2	4.00	Υ	N	10		666	100%	1750	0.381	636	100%	1750	0.363
2B	2	4.00	N	N	15		746	100%	1960	0.381	711	100%	1960	0.363
2C	2	4.00	N	N	18		758	100%	1990	0.381	723	100%	1990	0.363
3p	1		7GM +	15FG =	22	sec								


Notes:	AM Peak	1B+2C	PM Peak	1B+2C
	Sum of Critical y Y	0.606	Sum of Critical y Y	0.566
High Cycle = 130 seconds	Lost Time L (sec)	14	Lost Time L (sec)	14
adopted	Cycle Time c (sec)	130	Cycle Time c (sec)	130
	Practical Y Ypr	0.803	Practical Y Ypr	0.803
	Reserve Capacity RC	32%	Reserve Capacity RC	42%

Junction: J6

Simplified Priority Junction Capacity Calculation and Queue Length Calculation

Simplified Priority Junction Capacity and Queue Length Calculation

(Single Lane Minor Arm B) CE 58/1017(DS) Job Title: Junction: King Yip Street / Hing Yip Road (J8) Designed by: PΚ Scheme: Existing Checked by: JΥ 2018 Job No.: Design Year: 5160911 King Yip Street Eastbound ARM A: Hing Yip Street Southbound ARM B: ARM C: King Yip Street Downsteam **ARM C** King Yip Street Eastbound King Yip Street Downsteam am 870 1100 ARM A am pm 290 390 ARM B Hing Yip Street Southbound **GEOMETRY** W Lane widths (m) Major road width (m) 7.50 3.60 w(b-a) 0.00 Central Reserve width (m) Wcr 3.60 w(b-c) 0.25 Analysis Time Period (h) w(c-b) 0.00 Visibilities (m) Vr(b-a) 135 Calculated 1.01 D VI(b-a) 100 Ε 0.98 Vr(b-c) 100 F 0.73 Vr(c-b) 250 0.74 DFC CALCULATIONS **DFC CALCULATIONS AM PEAK** PM PEAK TRAFFIC FLOWS (pcu/hr) q(c-a) 0 0 q(c-b)q(a-b)0 q(a-c) 870 1100 q(b-a) 0 290 390 q(b-c) 1.00 1.00 333 CAPACITIES (pcu/hr) Q(b-a) 396 438 Q(b-c) 499 Q(c-b) 374 329 Q(b-ac) 499 438 DFC's 0.000 0.000 c-b b-ac 0.581 0.890 DFC In accordance with TPDM V2.4 0.58 0.89 - DFC In accordance with TPDM V2.4 PCU FACTOR 1.4 - DFC In accordance with TPDM V2.4 c-b 0.0 0.0 b-ac 8.1 QUEUE LENGTH (m) 0.0 0.0 c-b 48.4 b-ac 21.0 DFC's DFC's DFC's DFC's Where VI and Vr are visibility distances to the left or right of the respective streams D = (1+0.094(w(b-a)-3.65))(1+0.0009(Vr(b-a)-120))(1+0.0006(VI(b-a)-150))E = (1+0.094(w(b-c)-3.65))(1+0.0009(Vr(b-c)-120))F = (1+0.094(w(c-b)-3.65))(1+0.0009(Vr(c-b)-120))T.P.D.M.V.2.4 Y = 1-0.0345WAppendix 1 f = proportion of minor traffic turning left Critical DFC Q (b-ac) = Q(b-c)*Q(b-a)/(1-f)*Q(b-c)+f*Q(b-a)Capacity of combined streams - In accordance with TPDM V2.4 *Assume the average length per vehicle is 6 m Queue 95th $\approx 900T[(qx/Qx)-1+\sqrt{[(qx/Qx-1)^2+(3600/Qx)(qx/Qx)/(150T)]](Qx/3600)}$ HCM2000 Eq.17-37

ATKINS

JOB NO. : 5160911 Junction : _____ J9 - Wai Fat Road Crossing Design Year: 2023 2023 Design Designed by: _ PK Checked by: _____JY Scheme : Traffic Flow (pcu/hr)
AM(PM) 170(290) 910(1230) ASSUMED EXISTING PLANTER— TO BE MAINTAINED Jr. Mg R STAGE / PHASE DIAGRAM 1A 1A 1B 1B 2A 2A 2B 2B Зр 3p+2A G=5 IG=10 G= G= G= G= IG= IG=4 IG= 3p+2A G=5 IG=10 G= IG= G= IG=4 G= IG= G=

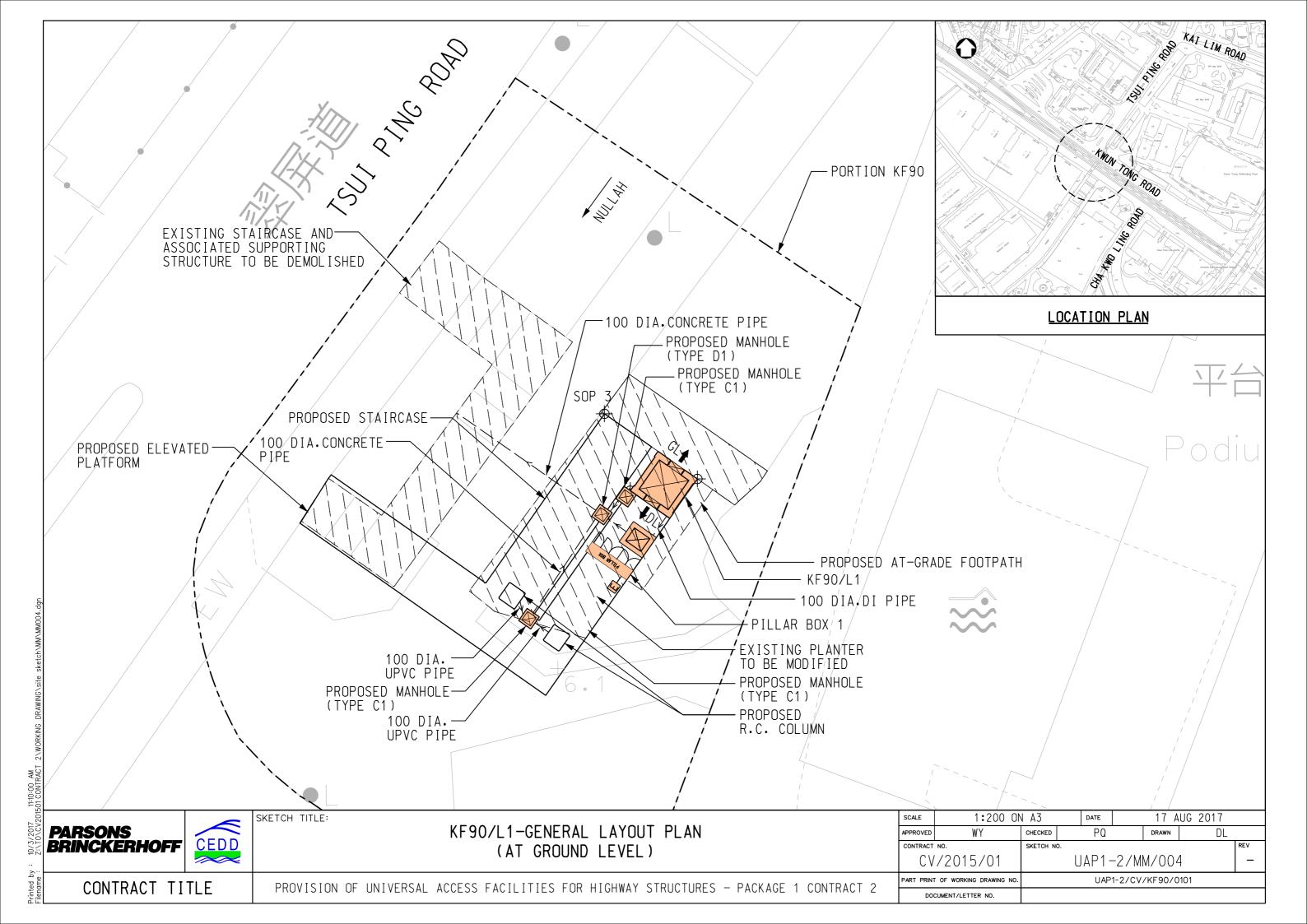
Capacity	/ Calcula	tions						AM I	Peak			PM	Peak	
Phase	Stage	Lane Width (m)	Nearside lane? (Y/N)	Opposed turn? (Y/N)	Radius for turning (m)	Gradient in %	Design Flow q (pcu/hr)	Proportion turning (%)	Saturation flow S (pcu/hr)	Flow factor	Design Flow q (pcu/hr)	Proportion turning (%)	Saturation flow S (pcu/hr)	Flow factor y
Wai Fat Ro	ad EB													
1A	2,3	3.65	Υ	N			82		1980	0.041	140		1980	0.071
1B	2,3	3.65	N	N			88		2120	0.042	150		2120	0.071
Wai Fat Ro	l ad WB													
2A	1,3	3.65	Υ	N			439		1980	0.222	594		1980	0.300
2B	1,3	3.65	N	N			471		2120	0.222	636		2120	0.300
3p 4p	2		5GM + 5GM +	7FG = 7FG =	12	sec sec								
	'		OGINI 1	710-	12	300								

iotes:	AIVI Peak	3p+zA	PIVI Peak	3p+2A
	Sum of Critical y Y	0.222	Sum of Critical y Y	0.300
	Lost Time L (sec)	18	Lost Time L (sec)	18
	Cycle Time c (sec)	45	Cycle Time c (sec)	45
	Practical Y Ypr	0.540	Practical Y Ypr	0.540
	Reserve Capacity RC	144%	Reserve Capacity RC	80%

Junction : J9 - Wai Fat Road Crossing

ATKINS

JOB NO. : ______5160911 Design Year: 2028 Junction : _____ J9 - Wai Fat Road Crossing 2028 Design Designed by: _ PK Checked by: _____JY Scheme : Traffic Flow (pcu/hr)
AM(PM) 250(380) 980(1310) ASSUMED EXISTING PLANTER— TO BE MAINTAINED Jr. Mg R Tr°Mg R STAGE / PHASE DIAGRAM 1A 1A 1B 1B 2A 2A 2B 2B Зр 3p+2A G=5 IG=10 G= G= G= G= IG= IG=4 IG= 3p+2A G=5 IG=10 G= IG= G= IG=4 G= IG= G=


Capacity	Calcula	tions						AM I	Peak			PM	Peak	
Phase	Stage	Lane Width (m)	Nearside lane? (Y/N)	Opposed turn? (Y/N)	Radius for turning (m)	Gradient in %	Design Flow q (pcu/hr)	Proportion turning (%)	Saturation flow S (pcu/hr)	Flow factor y	Design Flow q (pcu/hr)	Proportion turning (%)	Saturation flow S (pcu/hr)	Flow factor y
Wai Fat Ro	ad EB									-				
1A	1,3	3.65	Υ	N			121		1980	0.061	184		1980	0.093
1B	1,3	3.65	N	N			129		2120	0.061	196		2120	0.092
Wai Fat Ro	ad WB													
2A	2,3	3.65	Υ	N			473		1980	0.239	633		1980	0.320
2B	2,3	3.65	N	N			507		2120	0.239	677		2120	0.319
3p 4p	1 2		5GM +	7FG = 7FG =	12	sec								
10			OGINI I	77.0-	12									

Notes:	AM Peak	3p+2A	PM Peak	3p+2A
	Sum of Critical y Y	0.239	Sum of Critical y Y	0.320
	Lost Time L (sec)	18	Lost Time L (sec)	18
	Cycle Time c (sec)	45	Cycle Time c (sec)	45
	Practical Y Ypr	0.540	Practical Y Ypr	0.540
	Reserve Capacity RC	126%	Reserve Capacity RC	69%

Junction : J9 - Wai Fat Road Crossing

Appendix B

CEDD Contract No. CV/2015/01 Provision of
Universal Access Facilities for Highway Structure –
Package 1 Contract 2 Drawing No. UAP12/CV/KF90/0101

Appendix C

Queue Length Calculations Sheets

QUEUE LENGTH CALCULATION [SIGNALIZED JUNCTION]

Job Title:	CE 58/2017(D			L				Job No.:		5160911	
Junction:	· · · · · · · · · · · · · · · · · · ·		eet / Cha Kwo Li	ng Road				Ref. No.:		J4	
Scheme:	Year 2023 De		Shis itti Lii					Design year:		2023	
								Designed by:	PK	Checked by:	JY
Arm A:	Wai Fat Road	WB						,			•
Arm B:	Cha Kwo Ling	Road NB									
Arm C:	Wai Fat Road										
Arm D:	Shing Yip Stre	eet SB									
		Road EB					Shing Yip Design Flow Delay (s) Ave. Q (m)	Street SB 390(800) 29(49) 30(52)		N †	
	Design Flow Delay (s) Ave. Q (m)	170(290) 16 16(26)		→							
		,							Wai Fat F	Road WB	
									Design Flow Delay (s)	1250(1220) 5	
					7				Ave. Q (m)	9(47)	
			Cha Kwo Lir Design Flow Delay (s) Ave. Q (m)	10 April 10							
GREEN TIME, CYC	CLE TIME AND	FLOWS DATA	1	Δ.Ν.Λ	•				DM		
		F" " 0	O 1 T	AM L s · s	0 ((5	DOLLE 1	5" " 0	0 1 7	PM	0 (" 5	DOLLE 1
	Number of	Effective Green,	Cycle Time,	Design Flow,	Saturation Flow,	PCU Factor,	Effective Green,	Cycle Time,	Design Flow,	Saturation Flow,	PCU Factor,
	Lanes, n	g (sec)	c (sec)	q (pcu/hr)	S (pcu/hr)	р	g (sec)	c (sec)	q (pcu/hr)	S (pcu/hr)	р
Wai Fat Road WB	4	119	140	1250	7040	1.2	30	140	1220	7050	1.2
Cha Kwo Ling Road NB Wai Fat Road EB	3 2	36 9	140 140	480 170	5670 4070	1.2 1.2	30	140 140	420 290	5675 4070	1.2 1.2
Shing Yip Street SB	2	29	140	390	3610	1.2	46	140	800	3610	1.2
			110		3010			110	000	0010	1.2
AM PEAK QUEUE	LENGTH CAL	CULATION		Average Arrival	<u> </u>		<u> </u>		<u> </u>	1	<u> </u>
	Effective Red,	Effective Green	Degree of	Rate,			Estimated	Average Queue	Average Queue	Average Queue	Average Queue
	r (sec)	Ratio, L	Saturation, X	M (veh/cycle)			Delay, d(sec)	Length, L1 (m)	Length, L2 (m)	Length, L3 (m)	Length (m)
Wai Fat Road WB	21	0.85	0.21	40.5			2	5	9	9	9
Cha Kwo Ling Road NB	104	0.26	0.33	15.6			43	21	23	23	23
Wai Fat Road EB	131	0.06	0.65	5.5			69	16	15	15	16
Shing Yip Street SB	111	0.21	0.52	12.6			50	29	30	30	30
PM PEAK QUEUE	LENGTH CAL	CULATION									
	r (sec)	Effective Green Ratio, L	Degree of Saturation, X	Average Arrival Rate, M (veh/cycle)			Estimated Delay, d(sec)	Average Queue Length, L1 (m)	Length, L2 (m)	Average Queue Length, L3 (m)	Length (m)
Wai Fat Road WB	110 110	0.21 0.21	0.81 0.35	39.5 13.6			53	20	47 21	47 21	47 21
Cha Kwo Ling Road NB Wai Fat Road EB	126	0.21	0.35	9.4			62	۷۷	25	26	26
Shing Yip Street SB	94	0.33	0.67	25.9			42	49	52	52	52
RESULT SUMMAR		I .		1		***		I 	I		
Arm A:	Wai Fat Road W	/R		1		•	ueue Length (m)				ueue Length (m)
Arm B:	Cha Kwo Ling R						9 23				?1
Arm C:	Wai Fat Road El						16				?6
Arm D:	Shing Yip Street						30				52
Effective Red, Effective Green Rat Degree of Saturatio Average Arrival Rat Maximum Queue Le	n, e, ength	r = c-g L = g/c X = q/(SL) M = qc/3600p = 6 * Maximum	n Queue/n		// (DODO) 21 A / 4 / 10				ession if X>X'		

For conditions where the flow is near or even exceeds the capacity (X > X'):

Akcelik's time -depe	endent formula		Akcelik's time -dep	endent formula		Akcelik's time -de	pendent formula		Akcelik's time -deper	ndent formula	
<u>AM</u>	ARM A		AM A	RM B		<u>AM</u>	ARM C		<u>AM</u> <u>AF</u>	RM D	
<u>AM</u> q '=	1042	veh/hr	$\frac{AM}{q} = \frac{A}{q}$	400	veh/hr	<u>AM</u> q '=	142	veh/hr	<u>AM</u> <u>AF</u> q '=	325	veh/hr
c=	140	sec	c=	140	sec	c=	140	sec	c=	140	sec
S '=	5867	veh/hr	S '=	4725	veh/hr	S '=	3392	veh/hr	S '=	3008	veh/hr
t=	1	hr	t=	1	hr	t=	1	hr	t=	1	hr
X=	0.21		X=	0.33		X=	0.65		X=	0.52	
Q =	4987	veh/hr	Q =	1215	veh/hr	Q =	218	veh/hr	Q =	623	veh/hr
y=	0.18		y=	0.08		y=	0.04		y=	0.11	
L =	0.85		L=	0.26		L=	0.06		L=	0.21	
n =	4 la	ne	n =	3 la	ne	n =	2 lar	ne	n =	2 la	ne
X ' =	0.99		X ' =	0.75		X ' =	0.68		X ' =	0.71	
X > X '	FALSE		X > X '	FALSE		X > X '	FALSE		X > X '	FALSE	
Z =	-0.79		Z =	-0.67		Z =	-0.35		Z =	-0.48	
No=	0.0	vehs	No=	0.0	vehs	No=	0.0	vehs	No=	0.0	vehs
Avg stop-line queue	e at start of green	(in vehs)	Avg stop-line queu	e at start of gree	n (in vehs)		ue at start of greer	,	Avg stop-line queue	at start of gree	n (in vehs)
N= qr + No			N= qr + No			N= qr + No			N= qr + No		
N =	6	vehs	N =	12	vehs	N =	5	vehs	N =	10	vehs
Avg queue length =	9	metres	Avg queue length	23	metres	Avg queue length	15	metres	Avg queue length	30	metres
<u>.</u>									<u>.</u>	40.0	
Average delay =	1.9	seconds	Average delay =	42.2	seconds	Average delay =	64.0	seconds	Average delay =	49.3	seconds

Akcelik's time -depe	endent formula		Akcelik's time -depe	endent formula		Akcelik's time -d	ependent formula		Akcelik's time -deper	ndent formula	
<u>PM</u>	ARM A		•	RM B		<u>PM</u>	ARM C			RM D	
q=	1017	veh/hr	q=	 350	veh/hr	q=	242	veh/hr	<u>PM</u> AR q=	667	veh/hr
C=	140	sec	C=	140	sec	C=	140	sec	c=	140	sec
S=	5875	veh/hr	S=	4729	veh/hr	S=	3392	veh/hr	S=	3008	veh/hr
t=	0.5	hr	t=	0.5	hr	t=	0.5	hr	t=	0.5	hr
X=	0.81		X=	0.35		X=	0.71		X=	0.67	
Q =	1259	veh/hr	Q =	1013	veh/hr	Q =	339	veh/hr	Q =	988	veh/hr
y=	0.17		y=	0.07		y=	0.07		y=	0.22	
L =	0.21		L=	0.21		L=	0.10		L=	0.33	
n =	4 la	ane	n =	3 la	ne	n =	2 laı	ne	n =	2 la	ine
X ' =	0.75		X ' =	0.74		X ' =	0.69		X ' =	0.73	
X > X '	TRUE		X > X '	FALSE		X > X '	TRUE		X > X '	FALSE	
Z =	-0.19		Z =	-0.65		Z =	-0.29		Z =	-0.33	
No=	0.4	vehs	No=	0.0	vehs	No=	0.1	vehs	No=	0.0	vehs
Average Queue N= qr + No			Average Queue N= qr + No			Average Queue N= qr + No			Average Queue N= qr + No		
N =	31	vehs	N =	11	vehs	N =	9	vehs	N = .	17	vehs
Avg queue length =	47	metres	Avg queue lengtl	21	metres	Avg queue lengt	r 26	metres	Avg queue length	52	metres
Average delay =	53.5	seconds	Average delay =	46.7	seconds	Average delay =	62.2	seconds	Average delay =	40.5	seconds

QUEUE LENGTH CALCULATION [SIGNALIZED JUNCTION]

CF 58/2017/F)S)						Joh No ·		5160911	
· ·		eet / Cha Kwo Li	ng Road							
		J., J.IG INTO LI							2028	
								PK	_	JY
Wai Fat Road	WB						,		•	•
Cha Kwo Ling	Road NB									
Shing Yip Stre	eet SB									
	1					Shing Yip Design Flow Delay (s) Ave. Q (m)	Street SB 305(592) 26(43) 26(44)		N †	
Design Flow Delay (s) Ave. Q (m)	250(380) 22(31) 22(32)		\longrightarrow							
		Cha Kwo Lir	ng Road NB]	Γ	←		Design Flow	Road WB 1350(1280) 39 43(49)	
		Delay (s) Ave. Q (m)	570(510) 23(22) 26(24)							
CLE TIME AND	FLOWS DATA	\	Λ.Μ.					DM		
	F# # 0	O 1 T		0 (); []	DOLLE 1	F" " 0	0 1 7			DOLLE 1
Number of	Effective Green,	Cycle Time,			PCU Factor,	Effective Green,	Cycle Time,		Saturation Flow,	PCU Factor,
Lanes, n	g (sec)	c (sec)			р	g (sec)	c (sec)		S (pcu/hr)	р
										1.2
										1.2 1.2
										1.2
		110	000	01.10			110	002	0.00	1.2
LENGIH CAL	CULATION		Average Arrival	1		1	<u> </u>		1	
Effective Red,	Effective Green	Degree of	Rate,			Estimated	Average Queue	Average Queue	Average Queue	Average Queue
r (sec)	Ratio, L	Saturation, X	M (veh/cycle)			Delay, d(sec)	Length, L1 (m)	Length, L2 (m)	Length, L3 (m)	Length (m)
91	0.35	0.55	43.8			37	39	43	43	43
98	0.30	0.34	18.5			39	23	26	26	26
127	0.09	0.66	8.1			64	22	22	22	22
123	0.12	0.68	9.9			62	26	26	26	26
LENGTH CAL	CULATION									
r (sec)	Ratio, L	Degree of Saturation, X	Average Arrival Rate, M (veh/cycle)			Estimated Delay, d(sec)	Average Queue Length, L1 (m)	Length, L2 (m)	Average Queue Length, L3 (m)	Length (m)
							22			49 24
			12.3			58	31	32	32	32
107	0.24	0.67	19.2			50	43	44	44	44
RY			1			1			1	l
Mc: F-4 D	/D									ueue Length (m)
										19 24
										34 32
										14
on,	r = c-g L = g/c X = q/(SL) M = qc/3600p = 6 * Maximum	n Oueue/n								
	Wai Fat Road Year 2028 De Wai Fat Road Cha Kwo Ling Wai Fat Road Shing Yip Street Wai Fat Design Flow Delay (s) Ave. Q (m) Number of Lanes, n 4 3 2 2 2 EHNGTH CAL Effective Red, r (sec) 91 98 127 123 LENGTH CAL Effective Red, r (sec) 109 103 120 107 RY Wai Fat Road Wai Fat Road E Shing Yip Street tio,	Wai Fat Road WB	Wai Fat Road / Shing Yip Street / Cha Kwo Li Year 2028 Design	Wai Fat Road / Shing Yip Street / Cha Kwo Ling Road	Wai Fat Road / Shing Yip Street / Cha Kwo Ling Road	Wai Fat Road (Shing Yip Street / Cha Kwo Ling Road Year 2028 Design	Wai Fat Road Shing Yip Street / Cha Kwo Ling Road	Wai Fat Road / Shing Yip Street / Che Kwa Ling Road Ref. No.	Was Fall Road Flows Design Prop Pk	Wail Fall Road UP PROPERTY Property

For conditions where the flow is near or even exceeds the capacity (X > X'):

Akcelik's time -deper	ndent formula		Akcelik's time -deper	ndent formula		Akcelik's time -dep	endent formula		Akcelik's time -depen	dent formula	
<u>AM</u>	<u>ARM A</u>		AM AR	<u>M B</u>		<u>AM</u>	ARM C		<u>AM</u> ARI	<u>M D</u>	
<u>AM</u> q '=	1125	veh/hr	AM AR q'=	475	veh/hr	<u>AM</u>	208	veh/hr	<u>AM</u> <u>ARI</u> q '=	254	veh/hr
c=	140	sec	c=	140	sec	c=	140	sec	c=	140	sec
S '=	5867	veh/hr	S '=	4713	veh/hr	S '=	3392	veh/hr	S '=	3092	veh/hr
t=	1	hr	t=	1	hr	t=	1	hr	t=	1	hr
X=	0.55		X=	0.34		X=	0.66		X=	0.68	
Q =	2053	veh/hr	Q =	1414	veh/hr	Q =	315	veh/hr	Q =	375	veh/hr
y=	0.19		y=	0.10		y=	0.06		y=	0.08	
L =	0.35		L=	0.30		L=	0.09		L=	0.12	
n =	4 la	ine	n =	3 la	ne	n =	2 lar	ne	n =	2 la	ne
X ' =	0.80		X ' =	0.76		X ' =	0.69		X ' =	0.69	
X > X '	FALSE		X > X '	FALSE		X > X '	FALSE		X > X '	FALSE	
Z =	-0.45		Z =	-0.66		Z =	-0.34		Z =	-0.32	
No=	0.0	vehs	No=	0.0	vehs	No=	0.0	vehs	No=	0.0	vehs
Avg stop-line queue N= qr + No	at start of green	,	Avg stop-line queue N= qr + No	•	, ,	Avg stop-line queu N= qr + No	ue at start of greer	,	Avg stop-line queue a N= qr + No	•	, ,
N =	28	vehs	N =	13	vehs	N =	/	vehs	N =	9	vehs
Avg queue length =	43	metres	Avg queue lengtł	26	metres	Avg queue length	22	metres	Avg queue length	26	metres
Average delay =	36.6	seconds	Average delay =	38.1	seconds	Average delay =	61.4	seconds	Average delay =	58.9	seconds

Akcelik's time -depen	dent formula		Akcelik's time -dep	endent formula		Akcelik's time -de	pendent formula		Akcelik's time -deper	ndent formula	
<u>PM</u>	ARM A		<u>PM</u> <u>A</u>	RM B		<u>PM</u>	ARM C		PM AF	RM D	
<u>PM</u> q=	1067	veh/hr	q=	425	veh/hr	<u>PM</u> q=	317	veh/hr	<u>PM</u> <u>AF</u> q=	493	veh/hr
c=	140	sec	c=	140	sec	c=	140	sec	c=	140	sec
S=	5875	veh/hr	S=	4713	veh/hr	S=	3392	veh/hr	S=	3113	veh/hr
t=	0.5	hr	t=	0.5	hr	t=	0.5	hr	t=	0.5	hr
X=	0.82		X=	0.34		X=	0.65		X=	0.67	
Q =	1301	veh/hr	Q =	1245	veh/hr	Q =	485	veh/hr	Q =	734	veh/hr
y=	0.18		y=	0.09		y=	0.09		y=	0.16	
L =	0.22		L=	0.26		L=	0.14		L=	0.24	
n =	4 la	ane	n =	3 la	ne	n =	2 la	ne	n =	2 la	ne
X ' =	0.75		X ' =	0.75		X ' =	0.70		X ' =	0.72	
X > X '	TRUE		X > X '	FALSE		X > X '	FALSE		X > X '	FALSE	
Z =	-0.18		Z =	-0.66		Z =	-0.35		Z =	-0.33	
No=	0.5	vehs	No=	0.0	vehs	No=	0.0	vehs	No=	0.0	vehs
Average Queue N= qr + No			Average Queue N= qr + No			Average Queue N= qr + No			Average Queue N= qr + No		
N =	33	vehs	N =	12	vehs	N =	11	vehs	N =	15	vehs
Avg queue length =	49	metres	Avg queue lengtl	24	metres	Avg queue length	32	metres	Avg queue length	44	metres
Average delay =	53.3	seconds	Average delay =	41.6	seconds	Average delay =	56.7	seconds	Average delay =	48.6	seconds

QUEUE LENGTH CALCULATION [SIGNALIZED JUNCTION]

Joh Titlo:	CE 59/2017/D							loh No :		5160011	
Job Title: Junction:	CE 58/2017(D		d (Wai Fat Road	WR only)				Job No.: Ref. No.:		5160911 J5	
Scheme:			d (vvai Fat Road dditional Crossing					Design year:		2023	
Ocheme.	1 Gai 2020_DG	sign without At		,				Designed by:	PK	Checked by:	JY
Arm A:	Wai Yip Street	t SR - SA						Designed by.	110	Officered by.	01
		t SB - RT & UT	-								
Arm C:	vai rip otioo	100 111 401									
Arm D:											
				Wai Yip Street Design Flow Delay (s) Ave. Q (m) Max. Q (m)	SB - RT & UT 785(685) 74(60)		7			N _	
								Wai Yip St	reet SB - SA]	
								Design Flow	280(410)		
								Delay (s)	19(30)		
								Ave. Q (m)	21(31)		
								Max. Q (m)			
					I						
GREEN TIME, CYC	LE TIME AND	FLOWS DATA	\	AM					PM		
	Number of	Effortive Cross	Cyclo Timo		Saturation Flam	DCII Ecotor	Effective Creer	Cyclo Time		Saturation Flam	DCII Eastar
	Number of	Effective Green,	Cycle Time,	Design Flow,	Saturation Flow,	PCU Factor,	Effective Green,	Cycle Time,	Design Flow,	Saturation Flow,	PCU Factor,
	Lanes, n	g (sec)	c (sec)	q (pcu/hr)	S (pcu/hr)	p	g (sec)	c (sec)	q (pcu/hr)	S (pcu/hr)	p
Wai Yip Street SB - SA	2 2	32 32	140 140	280 785	4230 3580	1.2 1.2	30	140 140	410 685	4230 3580	1.2 1.2
Wai Yip Street SB - RT & U		32	140	765	3300	1.2	30	140	000	3300	1.2
0											
AM PEAK QUEUE I	ENGTH CAL	CIII ATION									
AW PEAR QUEUE I	LENGTH CAL	CULATION		Average Arrival	T T		T				
	Effective Red,	Effective Green	Degree of	Rate,			Estimated	Average Queue	Average Queue	Average Queue	Average Queue
	r (sec)	Ratio, L	Saturation, X	M (veh/cycle)			Delay, d(sec)	Length, L1 (m)	Length, L2 (m)	Length, L3 (m)	Length (m)
Wai Yip Street SB - SA	108	0.23	0.29	9.1			45	19	21	21	21
Wai Yip Street SB - RT	108	0.23	0.95	25.4			79		59	74	74
0											
PM PEAK QUEUE L	ENGTH CAL	CULATION		Average Arrival	 			<u> </u>		<u> </u>	
	Effective Red,	Effective Green	Degree of	Rate,			Estimated	Average Queue	Average Queue	Average Queue	Average Queue
	r (sec)	Ratio, L	Saturation, X	M (veh/cycle)			Delay, d(sec)	Length, L1 (m)	Length, L2 (m)	Length, L3 (m)	Length (m)
Wai Yip Street SB - SA	110	0.21	0.46	13.3			49	30	31	31	31
Wai Yip Street SB - RT	110	0.21	0.90	22.2			68		52	60	60
0											
RESULT SUMMARY	Υ			1	T	AM Average (Queue Length (m)	<u> </u>		PM Average Or	ueue Length (m)
Arm A:	Wai Yip Street S	B - SA				, iivi / tvoluge (21				1
	Wai Yip Street S						74				0
Arm C:											
Arm D:											
Effective Red, Effective Green Ration Degree of Saturation Average Arrival Rate Maximum Queue Le Estimated Delay, Average Queue Len	n, e, ngth		-LX) + 3600pX ² /2			• •	by Akcelik's time- celik's time-deper	-			
In accordance with TPD * Note: The probability o	M - Volume 4.2.5	5.2									

For conditions where the flow is near or even exceeds the capacity (X > X'):

Akcelik's time -depe	endent formula		Akcelik's time -depe	endent formula	
<u>AM</u>	<u>ARM A</u>		AM AR	RM B	
<u>AM</u> q '=	233	veh/hr	<u>AM</u> <u>AR</u> q '=	654	veh/hr
c=	140	sec	c=	140	sec
S '=	3525	veh/hr	S '=	2983	veh/hr
t=	1	hr	t=	1	hr
X=	0.29		X=	0.95	
Q =	817	veh/hr	Q =	692	veh/hr
y=	0.07		y=	0.22	
L =	0.23		L=	0.23	
n =	2 la	ane	n =	2 la	ne
X ' =	0.72		X ' =	0.71	
V VI	E41.0E		V . VI	TD. 15	
X > X '	FALSE		X > X '	TRUE	
Z =	-0.71		Z =	-0.05	
No=	0.0	vehs	No=	5.0	vehs
Avg stop-line queue	e at start of green	(in vehs)	Avg stop-line queue	at start of gree	n (in vehs)
N= qr + No			N= qr + No		
N =	7	vehs	N =	25	vehs
Avg queue length =	= 21	metres	Avg queue lengtł	74	metres
	44.0				
Average delay =	44.2	seconds	Average delay =	79.0	seconds
			ļ		

Akcelik's time -dep	pendent formula		Akcelik's time -deper	ndent formula	
	ARM A		- I	<u>M B</u>	
<u>PM</u> q=	342	veh/hr	PM AR	571	veh/hr
C=	140	sec	C=	140	sec
S=	3525	veh/hr	S=	2983	veh/hr
t=	0.5	hr	t=	0.5	hr
X=	0.46		X=	0.90	
Q =	748	veh/hr	Q =	633	veh/hr
y=	0.10		y=	0.19	
L =	0.21		L=	0.21	
n =	2 la	ane	n =	2 la	ine
X ' =	0.72		X ' =	0.71	
X > X '	FALSE		X > X '	TRUE	
Z =	-0.54		Z =	-0.10	
No=	0.0	vehs	No=	2.5	vehs
Average Queue			Average Queue		
N= qr + No			N= qr + No		
N =	10	vehs	N =	20	vehs
Avg queue length =	= 31	metres	Avg queue length	60	metres
Avg queue length	_	metres	Avg queue lengti	00	metres
Average delay =	48.1	seconds	Average delay =	68.0	seconds

QUEUE LENGTH CALCULATION [SIGNALIZED JUNCTION]

Job Title:	CE 58/2017(D							Job No.:		5160911	
Junction:	· · · · · · · · · · · · · · · · · · ·		d (Wai Fat Road	WB only)				Ref. No.:		J5	
Scheme:	Year 2023_De	esign with Addit	ional Crossings	.,				Design year:		2023	
								Designed by:	PK	Checked by:	JY
Arm A:	Wai Yip Stree										
Arm B:	Wai Yip Stree	t SB - RT & UT	-								
Arm C:											
Arm D:					•						
				Wai Yip Street Design Flow Delay (s) Ave. Q (m) Max. Q (m)	SB - RT & UT 785(685) 74(60)		7			N _	
					7	\leftarrow Γ			reet SB - SA	_	
								Design Flow	280(410)	-	
								Delay (s) Ave. Q (m)	19(30) 21(31)	1	
								Max. Q (m)	۲۱(۵۱)	†	
								(***)		_	
GREEN TIME, CYC	LE TIME AND	FLOWS DATA	<u> </u>								
OKEEN TIME, OTO			`	AM			T		PM		
	Number of	Effective Green,	Cycle Time,	Design Flow,	Saturation Flow,	PCU Factor,	Effective Green,	Cycle Time,	Design Flow,	Saturation Flow,	PCU Factor,
	Lanes, n		c (sec)	q (pcu/hr)	S (pcu/hr)					S (pcu/hr)	
Wai Yip Street SB - SA	2	g (sec) 32	140	280	4230	p 1.2	g (sec) 30	c (sec)	q (pcu/hr) 410	4230	1.2
Wai Yip Street SB - RT & U		32	140	785	3580	1.2	30	140	685	3580	1.2
0											
AM PEAK QUEUE	LENGTH CAL	CULATION					•				
				Average Arrival							
	Effective Red,	Effective Green	Degree of	Rate,			Estimated	Average Queue	Average Queue	Average Queue	_
W : V' OL LOD OA	r (sec)	Ratio, L	Saturation, X	M (veh/cycle)			Delay, d(sec)	Length, L1 (m)	Length, L2 (m)	Length, L3 (m)	Length (m)
Wai Yip Street SB - SA		0.23	0.29	9.1			45	19	21	21 74	21 74
Wai Yip Street SB - RT ດ	108	0.23	0.95	25.4			79		59	74	/4
	L ENOTH OAL	OUI ATION		<u> </u>			<u> </u>			<u> </u>	
PM PEAK QUEUE	LENGTH CAL	CULATION		Average Arrival	T		1	1			
	Effective Red,	Effective Green	Degree of	Rate,			Estimated	Average Queue	Average Queue	Average Queue	Average Queue
	r (sec)	Ratio, L	Saturation, X	M (veh/cycle)			Delay, d(sec)	Length, L1 (m)	Length, L2 (m)	Length, L3 (m)	Length (m)
Wai Yip Street SB - SA		0.21	0.46	13.3			49	30	31	31	31
Wai Yip Street SB - RT	110	0.21	0.90	22.2			68		52	60	60
0											
										<u> </u>	
RESULT SUMMAR	Y			1	1						
Arm A:	Wai Yip Street S	2R _ Q A					ueue Length (m)			1	ueue Length (m)
Arm A: Arm B:	Wai Yip Street S						<u>74</u>				60 60
Arm C:	The rip officer of	111 401					•			<u> </u>	· -
Arm D:											
Effective Red, Effective Green Rati Degree of Saturation Average Arrival Rate Maximum Queue Le Estimated Delay, Average Queue Len In accordance with TPD	n, e, ength gth,	L1 = 6q(r/2+d)	n Queue/n -LX) + 3600pX²/2		(q/3600p)²)^(1/3) hichever the grea						
* Note: The probability o	of maximum que	ue exceeding the d	critical value is 5% (TPDM V.4.2. Tabl	e 2.5.2.4)			Γ			

For conditions where the flow is near or even exceeds the capacity (X > X'):

Akcelik's time -depe	endent formula		Akcelik's time -depe	endent formula	
<u>AM</u>	<u>ARM A</u>		AM AR	RM B	
<u>AM</u> q '=	233	veh/hr	<u>AM</u> <u>AR</u> q '=	654	veh/hr
c=	140	sec	c=	140	sec
S '=	3525	veh/hr	S '=	2983	veh/hr
t=	1	hr	t=	1	hr
X=	0.29		X=	0.95	
Q =	817	veh/hr	Q =	692	veh/hr
y=	0.07		y=	0.22	
L =	0.23		L=	0.23	
n =	2 la	ane	n =	2 la	ne
X ' =	0.72		X ' =	0.71	
V VI	E41.0E		V . VI	TD. 15	
X > X '	FALSE		X > X '	TRUE	
Z =	-0.71		Z =	-0.05	
No=	0.0	vehs	No=	5.0	vehs
Avg stop-line queue	e at start of green	(in vehs)	Avg stop-line queue	at start of gree	n (in vehs)
N= qr + No			N= qr + No		
N =	7	vehs	N =	25	vehs
Avg queue length =	= 21	metres	Avg queue lengtł	74	metres
.	44.0				
Average delay =	44.2	seconds	Average delay =	79.0	seconds
			ļ		

Akcelik's time -depe	andent formula		Akcelik's time -depe	ndent formula	
	ARM A		-	RM B	
<u>PM</u> q=	342	veh/hr	<u>PM</u> AR	571	veh/hr
c=	140	sec	C=	140	sec
S=	3525	veh/hr	S=	2983	veh/hr
t=	0.5	hr	t=	0.5	hr
X=	0.46		X=	0.90	
Q =	748	veh/hr	Q =	633	veh/hr
y=	0.10		y=	0.19	
L =	0.21		L=	0.21	
n =	2 la	ane	n =	2 la	ine
X ' =	0.72		X ' =	0.71	
X > X '	FALSE		X > X '	TRUE	
X > X	TALOL		X > X	INOL	
Z =	-0.54		Z =	-0.10	
No=	0.0	vehs	No=	2.5	vehs
Average Queue			Average Queue		
N= qr + No			N= qr + No		
N =	10	vehs	N =	20	vehs
Ava augus langth -	24	motros	Ava augus longti	60	motros
Avg queue length =	31	metres	Avg queue lengtl	60	metres
Average delay =	48.1	seconds	Average delay =	68.0	seconds
, wordgo dolay	10.1	55551145	, wordy	00.0	55001100

Job Title:	CE 58/2017(D	IS)		•				Job No.:		5160911	
Junction:	,		d (Wai Fat Road	WB only)				Ref. No.:		J5	
Scheme:			ditional Crossing					Design year:		2028	
001101110.	1001 2020_50	orgin manoacha		<u>y </u>				Designed by:	PK	Checked by:	JY
Arm A:	Wai Yip Street	t SB - SA						12 co.g. ca 2).		oneened by:	0.
	Wai Yip Street										
Arm C:	110.1.19 0 0										
Arm D:											
				Wai Yip Str Design Flow Delay (s) Ave. Q (m) Max. Q (m)	eet SB - RT 875(775) 157(95)		7	Design Flow Delay (s) Ave. Q (m) Max. Q (m)	rm C	N _	
								Wai Yip St	reet SB - SA]	
								Design Flow	290(430)		
								Delay (s)	20(31)		
								Ave. Q (m)	22(33)		
								Max. Q (m)			
					I						
GREEN TIME, CYC	LE TIME AND	FLOWS DATA	\	AM					PM		
	Number of	Effective Green,	Cyclo Timo		Saturation Flow,	PCU Factor,	Effective Green,	Cycle Time		Saturation Flow,	PCU Factor,
			Cycle Time,	Design Flow,		POU Pacioi,		Cycle Time,	Design Flow,		POU Facior,
	Lanes, n	g (sec)	c (sec)	q (pcu/hr)	S (pcu/hr)	p	g (sec)	c (sec)	q (pcu/hr)	S (pcu/hr)	p
Wai Yip Street SB - SA Wai Yip Street SB - RT	2 2	32 32	140 140	290 875	4230 3580	1.2 1.2	29	140 140	430 775	4230 3580	1.2 1.2
Wai Tip Street SB - IXT		OZ.	140	073	3300	1.2	25	140	770	3300	1.2
AM PEAK QUEUE I	FNGTH CAL	CUL ATION									
ZIII I EAR QUEUE				Average Arrival							
		Effective Green	Degree of	Rate,			Estimated	Average Queue	Average Queue	Average Queue	Average Queue
	r (sec)	Ratio, L	Saturation, X	M (veh/cycle)			Delay, d(sec)	Length, L1 (m)	Length, L2 (m)	Length, L3 (m)	Length (m)
Wai Yip Street SB - SA		0.23	0.30	9.4			45	20	22	22	22
Wai Yip Street SB - RT	108	0.23	1.07	28.4			215		66	157	157
0											
PM PEAK QUEUE L	LENGTH CAL	CULATION		Average Arrival							
	Effective Red,	Effective Green	Degree of	Rate,			Estimated	Average Queue	Average Queue	Average Queue	Average Queue
	r (sec)	Ratio, L	Saturation, X	M (veh/cycle)			Delay, d(sec)	Length, L1 (m)	Length, L2 (m)	Length, L3 (m)	Length (m)
Wai Yip Street SB - SA	111	0.21	0.49	13.9			49	31	33	33	33
Wai Yip Street SB - RT	111	0.21	1.03	25.1			124		60	95	95
0											
DECIII T CHMMAD	<u> </u>]			
RESULT SUMMARY	ı					AM Average	Queue Length (m)			PM Average Qu	ueue Length (m)
Arm A:	Wai Yip Street S	B - SA					22				3
	Wai Yip Street S	B - RT					157			9	5
Arm C:											
Arm D:											
Effective Red, Effective Green Ration Degree of Saturation Average Arrival Rate Maximum Queue Les Estimated Delay, Average Queue Len	n, e, ngth		-LX) + 3600pX ² /2				t by Akcelik's time- kcelik's time-deper				
In accordance with TPD * Note: The probability of	M - Volume 4.2.5	5.2				ator, Ore LO (A	σσιικ σ timo-ασμ σ ι	14011 OAPI 6331011	, 11 A. A. J		

Akcelik's time -dep	endent formula		Akcelik's time -dep	pendent formula	
<u>AM</u>	ARM A		AM A	ARM B	
<u>AM</u> q '=	242	veh/hr	<u>AM</u> q '=	729	veh/hr
c=	140	sec	c=	140	sec
S '=	3525	veh/hr	S '=	2983	veh/hr
t=	1	hr	t=	1	hr
X=	0.30		X=	1.07	
Q =	804	veh/hr	Q =	681	veh/hr
y=	0.07		y=	0.24	
L =	0.23		L=	0.23	
n =		ane	n =	2 la	ne
X ' =	0.72		X ' =	0.71	
V > V !	FALOE		V > V I	TDUE	
X > X '	FALSE		X > X '	TRUE	
Z =	-0.70		Z =	0.07	
No=	0.0	vehs	No=	30.3	vehs
Avg stop-line queu	e at start of green	(in vehs)	Avg stop-line que	ue at start of gree	en (in vehs)
N= qr + No			N= qr + No		
N =	7	vehs	N =	52	vehs
Avg queue length :	= 22	metres	Avg queue lengtl	157	metres
A	44.0		A.,	045.4	
Average delay =	44.8	seconds	Average delay =	215.4	seconds

	CE 58/2017(D							Job No.:		5160911	
Junction:	\\		d (Wai Fat Road	WB only)				Ref. No.:		J5	
Scheme:	Year 2028_De	esign with Addit	ional Crossings	.,				Design year:		2028	
								Designed by:	PK	Checked by:	JY
Arm A:	Wai Yip Stree										
Arm B:	Wai Yip Stree	t SB - RT & UT									
Arm C:											
Arm D:					•	•					
				Design Flow	SB - RT & UT 875(775)					N _	
				Delay (s) Ave. Q (m) Max. Q (m)	157(95)	1	7				
					7	← Γ					
								Wai Yip St	reet SB - SA		
								Design Flow	290(430)		
								Delay (s)	20(31)		
								Ave. Q (m) Max. Q (m)	22(33)	-	
								Iviax. Q (III)			
GREEN TIME, CYC	I E TIME AND	ELOWS DAT	\		-	-					
GREEN TIME, CTC	LE TIME AND		1	AM					PM		
	Number of	Effective Green,	Cycle Time,	Design Flow,	Saturation Flow,	PCU Factor,	Effective Green,	Cycle Time,	Design Flow,	Saturation Flow,	PCU Factor,
	Lanes, n	g (sec)	c (sec)	q (pcu/hr)	S (pcu/hr)		g (sec)	c (sec)	q (pcu/hr)	S (pcu/hr)	p
Wai Yip Street SB - SA	2	32	140	290	4230	р 1.2	29	140	430	4230	1.2
Wai Yip Street SB - RT & UT	2	32	140	875	3580	1.2	29	140	775	3580	1.2
0											
AM PEAK QUEUE	LENGTH CAL	CULATION									
	Effective Red,	Effective Green	Degree of	Average Arrival Rate,			Estimated	Average Queue	Average Queue	Avorago Ouguo	Average Queue
	r (sec)	Ratio, L	Saturation, X	M (veh/cycle)			Delay, d(sec)	Length, L1 (m)	Length, L2 (m)	Average Queue Length, L3 (m)	Length (m)
Wai Yip Street SB - SA	` ,	0.23	0.30	9.4			45	20	22	22	22
Wai Yip Street SB - RT		0.23	1.07	28.4			215		66	157	157
0											
PM PEAK QUEUE I	LENGTH CAL	CULATION		_						_	
		Effective Green	Degree of	Average Arrival Rate,			Estimated	Average Queue	_	Average Queue	_
Wai Yip Street SB - SA	r (sec) 111	Ratio, L 0.21	Saturation, X 0.49	M (veh/cycle) 13.9			Delay, d(sec)	Length, L1 (m)	Length, L2 (m) 33	Length, L3 (m)	Length (m) 33
Wai Yip Street SB - RT		0.21	1.03	25.1			124		60	95	95
0											
RESULT SUMMAR	Υ										
						AM Average	Queue Length (m)				ueue Length (m)
Arm A:	Wai Yip Street S						22 157				33
Arm B: Arm C:	Wai Yip Street S	B-RI &UI					157			,)5
Arm D:											
Effective Red, Effective Green Rati Degree of Saturation Average Arrival Rate Maximum Queue Le Estimated Delay, Average Queue Len In accordance with TPD	n, e, ngth gth,	L1 = 6q(r/2+d)	n Queue/n -LX) + 3600pX²/2				by Akcelik's time- celik's time-deper				
* Note: The probability of			critical value is 5% ((TPDM V.4.2. Tabl	e 2.5.2.4)			1			

Akcelik's time -dep	endent formula		Akcelik's time -dep	pendent formula	
<u>AM</u>	ARM A		AM A	ARM B	
<u>AM</u> q '=	242	veh/hr	<u>AM</u> q '=	729	veh/hr
c=	140	sec	c=	140	sec
S '=	3525	veh/hr	S '=	2983	veh/hr
t=	1	hr	t=	1	hr
X=	0.30		X=	1.07	
Q =	804	veh/hr	Q =	681	veh/hr
y=	0.07		y=	0.24	
L =	0.23		L=	0.23	
n =		ane	n =	2 la	ne
X ' =	0.72		X ' =	0.71	
V > V !	FALOE		V > V I	TDUE	
X > X '	FALSE		X > X '	TRUE	
Z =	-0.70		Z =	0.07	
No=	0.0	vehs	No=	30.3	vehs
Avg stop-line queu	e at start of green	(in vehs)	Avg stop-line que	ue at start of gree	en (in vehs)
N= qr + No			N= qr + No		
N =	7	vehs	N =	52	vehs
Avg queue length :	= 22	metres	Avg queue lengtl	157	metres
A	44.0		A.,	045.4	
Average delay =	44.8	seconds	Average delay =	215.4	seconds

Job Title: Junction: Scheme: Arm A: Arm B: Arm C: Arm D:	2023 Design Wai Fat Road Wai Fat Road Arm A	Road Crossing EB						Job No.: Ref. No.: Design year: Designed by:	PK	5160911 J9 2023 Checked by:	JY
Arm A: Arm B: Arm C:	2023 Design Wai Fat Road Wai Fat Road Arm A	EB						Design year:	PK	2023	JY
Arm A: Arm B: Arm C:	Wai Fat Road Wai Fat Road Arm A								PK		JY
Arm B: Arm C:	Wai Fat Road Arm A							Designed by.	FK	опескей ру.	J1
Arm B: Arm C:	Wai Fat Road Arm A										
Arm C:	Arm A	VVB									
Arm D:											
	Design Flow Delay (s) Ave. Q (m)	Road EB 170(290) 12(13) 4(6)		<u> </u>						N †	
							—		Arm B Wai Fat R Design Flow Delay (s) Ave. Q (m)	910(1230) 5(6) 11(15)	
GREEN TIME, CY	CLE TIME AND	FLOWS DATA	1	AM					PM		
						DA =	 				
	Number of	Effective Green,	Cycle Time,	Design Flow,	Saturation Flow,	PCU Factor,	Effective Green,	Cycle Time,	Design Flow,	Saturation Flow,	PCU Factor,
	Lanes, n	g (sec)	c (sec)	q (pcu/hr)	S (pcu/hr)	р	g (sec)	c (sec)	q (pcu/hr)	S (pcu/hr)	р
Wai Fat Road EB	2	13	45	170	4100	1.2	13	45	290	4100	1.2
Wai Fat Road WB	2	27	45	910	4100	1.2	27	45	1230	4100	1.2
	0										
	0										
AM DEAK OUTUR	I ENOTH OAL										
AM PEAK QUEUE	LENGTH CAL	CULATION		T Average Arrival	т т						1
	Effective Red,	Effective Green	Degree of	Average Arrival Rate,			Estimated	Average Queue	Average Queue	Average Queue	Average Queue
	r (sec)	Ratio, L	Saturation, X	M (veh/cycle)			Delay, d(sec)	Length, L1 (m)	Length, L2 (m)	Length, L3 (m)	Length (m)
Mai Eat Bood EB	32	 							Lengin, LZ (m)	Length, Lo (III)	
Wai Fat Road EB		0.29	0.14	1.8			12	3	4	4	4
Wai Fat Road WB	18	0.60	0.37	9.5			5	9	11	11	11
	0			<u></u>						<u> </u>	
	0										
PM PEAK QUEUE	LENGTH CAL	CULATION									
				Average Arrival	Т					7	
	Effective Red,	Effective Green	Degree of	Rate,			Estimated	Average Queue	Average Queue	Average Queue	Average Queue
	r (sec)	Ratio, L	Saturation, X	M (veh/cycle)			Delay, d(sec)	Length, L1 (m)	Length, L2 (m)	Length, L3 (m)	Length (m)
Wai Fat Road EB	32	0.29	0.24	3.0			13	6	6	6	6
Wai Fat Road WB	18	0.60	0.50	12.8			6	13	15	15	15
	0										
	0			<u> </u>					1	'	
RESULT SUMMA								<u></u>			
ILLUGET GOMMA	13.1				T	ΔM Average O:	ueue Length (m)			PM Average O:	ueue Length (m)
Arm A:	Wai Fat Road El	 R		 		Aw Average Qu	4				6
Arm B:	Wai Fat Road W						1 1				5 5
Arm C:	VVai i at i toad vv	<u> </u>					•			<u>'</u>	<u> </u>
Arm D:	1			 						 	
Effective Red, Effective Green Ra	on,	r = c-g L = g/c X = q/(SL) M = qc/3600p									
Degree of Saturation Average Arrival Ra Maximum Queue L Estimated Delay	•	= 6 * Maximum $d = c(1-1)^2/2(1-1)^$)a(1-X) = 0 65/a/	'(a/3600n\2\^(1/2\	*X^/2±5I \ ∩□ b	v Akcelik's time	denendent overs	assion if Y>Y'		
Average Arrival Ra Maximum Queue L Estimated Delay,	•	$d = c(1-L)^2/2(1-L)^2$	-LX) + 3600pX ² /2		/(q/3600p)²)^(1/3)	, ,	•				
Average Arrival Ra Maximum Queue L Estimated Delay, Average Queue Le	ength,	$d = c(1-L)^2/2(1-L)$	-LX) + 3600pX ² /2		/(q/3600p)²)^(1/3) hichever the grea	, ,	•				
Average Arrival Ra Maximum Queue L Estimated Delay,	ength, PDM - Volume 4.2.5	$d = c(1-L)^{2}/2(1-L$	-LX) + 3600pX²/2 /3600pn OR L2 =	= 6qr/3600pn w	hichever the grea	, ,	•				

Akcelik's time -dep	endent formula		Akcelik's time -dep	pendent formula	
	ARM A			ARM B	
<u>AM</u> q '=	142	veh/hr	<u>AM</u> q '=	758	veh/hr
C=	45	sec	C=	45	sec
S '=	3417	veh/hr	S '=	3417	veh/hr
t=	1	hr	t=	1	hr
X=	0.14		X=	0.37	
Q =	987	veh/hr	Q =	2050	veh/hr
y=	0.04		y=	0.22	
L =	0.29		L=	0.60	
n =	2 la	ane	n =	2 la	ne
X ' =	0.69		X ' =	0.71	
X > X '	FALSE		X > X '	FALSE	
X - X	IALOL		X > X	IALOL	
Z =	-0.86		Z =	-0.63	
No=	0.0	vehs	No=	0.0	vehs
Avg stop-line queu	e at start of green	(in vehs)	Avg stop-line queu	ue at start of gree	en (in vehs)
N= qr + No			N= qr + No		
N =	1	vehs	N =	4	vehs
Avg queue length	= 4	metres	Avg queue lengtl	11	metres
A	44.0		A	4.0	
Average delay =	11.9	seconds	Average delay =	4.6	seconds
			<u> </u>		

Akcelik's time -dep	endent formula		Akcelik's time -depe	endent formula	
	ARM A			RM B	
<u>PM</u> q=	242	veh/hr	PM AR	1025	veh/hr
c=	45	sec	C=	45	sec
S=	3417	veh/hr	S=	3417	veh/hr
t=	0.5	hr	t=	0.5	hr
X=	0.24		X=	0.50	
Q =	987	veh/hr	Q =	2050	veh/hr
y=	0.07		y=	0.30	
L=	0.29		L=	0.60	
n =		ane	n =	2 la	ne
X ' =	0.69		X ' =	0.71	
X > X '	FALSE		X > X '	FALSE	
Z =	-0.76		Z =	-0.50	
No=	0.0	vehs	No=	0.0	vehs
Average Oueue			Average Oueue		
Average Queue N= qr + No			Average Queue		
N =	2	vehs	N= qr + No N =	5	vehs
IN -	2	VELIS	IN -	3	VELIS
Avg queue length =	= 6	metres	Avg queue lengtł	15	metres
Average delay =	12.2	seconds	Average delay =	5.1	seconds

Job Title:	CE 58/2017(D			•			-	Job No.:		5160911	
Junction:		Road Crossing						Ref. No.:			
Scheme:	2028 Design							Design year:		2028	
ocheme.	2020 Design							Designed by:	PK	Checked by:	JY
Λ Λ .	Mai Fat Dage	ГР						Designed by.	FK	Checked by.	J I
Arm A:	Wai Fat Road										
Arm B:	Wai Fat Road	VVB									
Arm C:											
Arm D:											
	Arm A Wai Fat Design Flow Delay (s) Ave. Q (m)	Road EB 250(380) 13(13) 6(8)		→					Arm B Wai Fat F	N A	1
									Design Flow Delay (s) Ave. Q (m)	980(1310) 5(6) 12(16)	
ODEEN TIME OV	OLE TIME AND	ELOWO DAT									
GREEN TIME, CY	CLE TIME AND	FLOWS DATA	<u>\</u>	AM			<u> </u>		PM		
					I			T			
	Number of	Effective Green,	Cycle Time,	Design Flow,	Saturation Flow,	PCU Factor,	Effective Green,	Cycle Time,	Design Flow,	Saturation Flow,	PCU Factor,
	Lanes, n	g (sec)	c (sec)	q (pcu/hr)	S (pcu/hr)	р	g (sec)	c (sec)	q (pcu/hr)	S (pcu/hr)	р
Wai Fat Road EB	2	13	45	250	4100	1.2	13	45	380	4100	1.2
Wai Fat Road WB	2	27	45	980	4100	1.2	27	45	1310	4100	1.2
	0										
	0										
AM DEAK OHEHE	ELENCTH CAL	CULATION									
AM PEAK QUEUE	LENGTH CAL	CULATION		Average Arrival	T		T	Ī	T		<u> </u>
	Effective Red,	Effective Green	Degree of	Rate,			Estimated	Average Queue	Average Queue	Average Queue	Average Queue
	r (sec)	Ratio, L	Saturation, X	M (veh/cycle)			Delay, d(sec)	Length, L1 (m)	Length, L2 (m)	Length, L3 (m)	Length (m)
Wai Fat Road EB	32	0.29	0.21	2.6			13	5	6	6	6
Wai Fat Road WB	18	0.60	0.21	10.2			5	10	12	12	12
VVAIT ALTOAU VVD	0	0.00	0.40	10.2			J 3	10	12	12	12
	0										
	<u> </u>						<u> </u>				
PM PEAK QUEUE	: LENGTH CAL	CULATION		Avorage Amires	 		_	1	Γ		<u> </u>
	Effective Red	Effective Green	Degree of	Average Arrival Rate,			Estimated	Average Oueue	Average Queue	Average Queue	Average Ougur
	r (sec)	Ratio, L	Saturation, X	M (veh/cycle)			Delay, d(sec)	Length, L1 (m)	Length, L2 (m)	Length, L3 (m)	Length (m)
Wai Fat Road EB	32	0.29	0.32	4.0			13	2 Q	Ω (111)	8	8 8
Wai Fat Road WB	18	0.29	0.52	13.6			6	14	16	16	16
	0	0.00	0.00				1			10	' '
	0										
DECLII T CUMANA	DV	1		1			1	1	L	I	<u> </u>
RESULT SUMMAI	N I				Т	ΛΝΑ Δυρτορίο Ο:	uouo Longth (m)	1		DM Average O	IOUG L coath ()
Arm A:	Wai Fat Road E	 R					ueue Length (m)			FIVE AVELAGE Q	ueue Length (m)
Arm B:	Wai Fat Road W						12				6
Arm C:	vvai i at i toad vi	70				<u>'</u>	12				
Arm D:											
Effective Red, Effective Green Ra Degree of Saturation Average Arrival Ra Maximum Queue L Estimated Delay, Average Queue Le	on, ate, ength	, , ,	n Queue/n -LX) + 3600pX²/2		/(q/3600p)²)^(1/3) hichever the grea	• •	-				
_	•	.,	roodopii OK LZ =	- oqi/oooopii w	monever the grea	ALGI, OR LO (AKC	ciik s uille-deper	ident expression	ı, ıı ^~^ <i>)</i>		
n accordance with TF	PDM - Volume 4.2.	5.2									
* Note: The probability	y of maximum que	ue exceeding the d	critical value is 5% ((TPDM V.4.2. Tabl	le 2.5.2.4)						
								1			

Akcelik's time -depe	ndent formula		Akcelik's time -dep	endent formula	
<u>AM</u>	ARM A		AM A	RM B	
<u>AM</u> q '=	208	veh/hr	<u>AM</u> <u>A</u> '=	817	veh/hr
c=	45	sec	c=	45	sec
S '=	3417	veh/hr	S '=	3417	veh/hr
t=	1	hr	t=	1	hr
X=	0.21		X=	0.40	
Q =	987	veh/hr	Q =	2050	veh/hr
y=	0.06		y=	0.24	
L=	0.29		L=	0.60	
n =	2 la	ane	n =	2 la	ne
X ' =	0.69		X ' =	0.71	
X > X '	FALSE		X > X '	FALSE	
Z =	-0.79		Z =	-0.60	
No=	0.0	vehs	No=	0.0	vehs
110-	0.0	VOITO	110-	0.0	VOITO
Avg stop-line queue	at start of green	(in vehs)	Avg stop-line queu	e at start of gree	n (in vehs)
N= qr + No	J	,	N= qr + No	· ·	,
N =	2	vehs	N =	4	vehs
Avg queue length =	6	metres	Avg queue lengtl	12	metres
Average delay =	12.1	seconds	Average delay =	4.7	seconds

Akcelik's time -depe	endent formula		Akcelik's time -depe	endent formula	
	ARM A		_	RM B	
<u>PM</u> q=	317	veh/hr	<u>PM</u> <u>AF</u> q=	1092	veh/hr
c=	45	sec	C=	45	sec
S=	3417	veh/hr	S=	3417	veh/hr
t=	0.5	hr	t=	0.5	hr
X=	0.32		X=	0.53	
Q =	987	veh/hr	Q =	2050	veh/hr
y=	0.09		y=	0.32	
L =	0.29		L=	0.60	
n =	2 la	ane	n =	2 la	ine
X ' =	0.69		X ' =	0.71	
X > X '	FALSE		X > X '	FALSE	
Z =	-0.68		Z =	-0.47	
No=	0.0	vehs	No=	0.0	vehs
Average Queue			Average Queue		
N= qr + No	0		N= qr + No	_	
N =	3	vehs	N =	5	vehs
Avg queue length =	8	metres	Avg queue length	16	metres
Twg quous longth -	·	metres	7 tvg queue lengti	10	motros
Average delay =	12.5	seconds	Average delay =	5.3	seconds
			,		

Asia Pacific Presence

Hong Kong

13th Floor Wharf T&T Centre Harbour City Tsim Sha Tsui, Kowloon Hong Kong Tel: (852) 2972 1000 Fax: (852) 2890 6343 General E-mail; info.hk@atkinsglobal.com

Beijing

10/F, Tower A, Gemdale Plaza No. 91 Jianguo Road, Chaoyang District Beijing 100022 China Tel: (86) 10 5965 1000 Fax: (86) 10 5965 1001 General E-mail: info cn@atkinsglobal.com

Shanghai

Unit 2204-2210, Ciro's Plaza No. 388 West Nanjing Road Shanghai 200003 China Tel: (86) 21 6080 2100 Fax: (86) 21 6080 2101 General E-mail: info.cn@atkinsglobal.com

Unit 01-02 & 11-16, 35/F Shun Hing Square Jie Fang Road, Luo Hu District Shenzhen 518008 China Tel: (86) 755 3332 0668 Fax: (86) 755 3332 0669 General E-mail: info.cn@atkinsglobal.com

Chengdu

Unit 05, 28/F, T2, Raffles Square No. 3, Section 4, South Renmin Road Wuhou District Chengdu 610041 China Tel: (86) 28 8620 2130 Fax: (86) 28 8620 2132 General E-mail: info:awc@atkinsglobal.com

Singapore 8 Cross Street

#24-01, PWC Building Singapore 048424 Tel: (65) 6227 6433 Fax: (65) 6227 9344 General E-mail: info.sg@atkinsglobal.com

www.atkinsglobal.com

Sydney Level 12, Suite 12.02 50 Berry Street North Sydney NSW 2060 Australia Tel: (61) 2 8002 0300 Fax: (61) 2 8920 8322

General E-mail: info.au@atkinsglobal.com

Level 13, AMP Building 140 St. Georges Terrace Perth WA 6000 Australia Tel: (61) 8 9322 8080 Fax: (61) 8 9322 8070

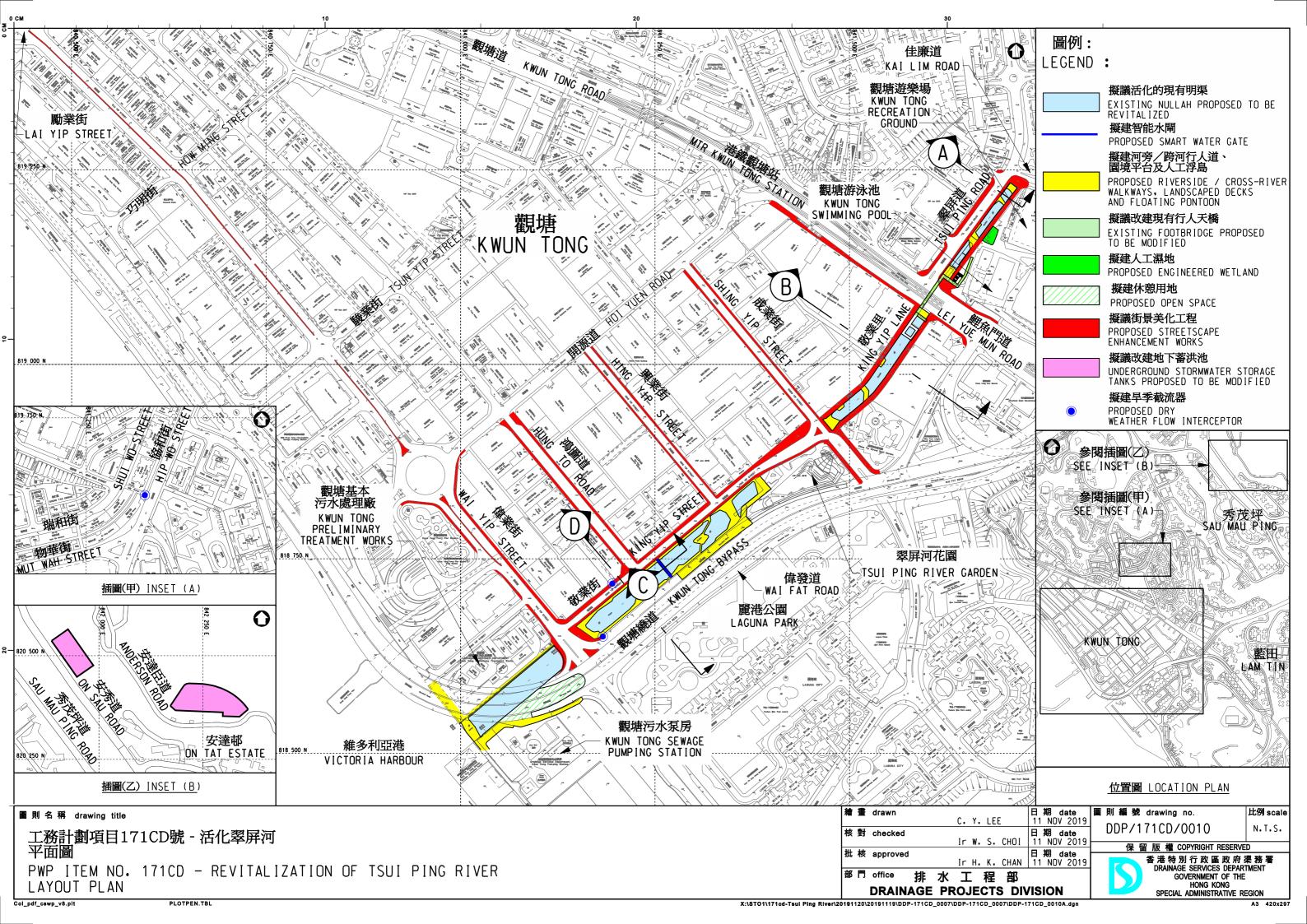
General E-mail: info.perth@atkinsglobal.com

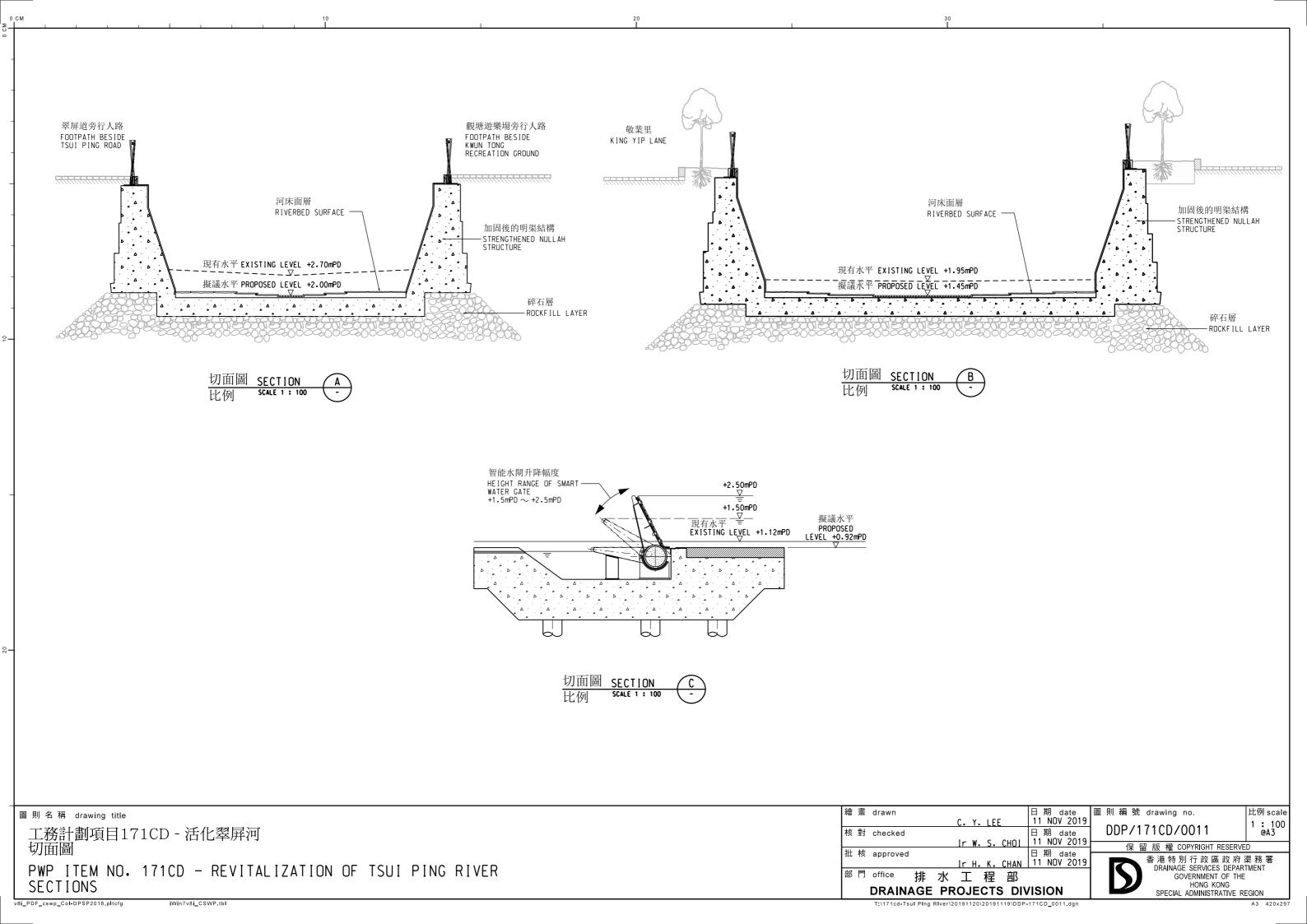
Ho Chi Minh City Unit 1316, 13/F, Kumho Asiana Plaza 39 Le Duan Street District 1, Ho Chi Minh City Vietnam Tel: (848) 6288 8700 DDI: (848) 6288 8972 Fax: (848) 6288 8701 General E-mail: info.vn@atkinsglobal.com

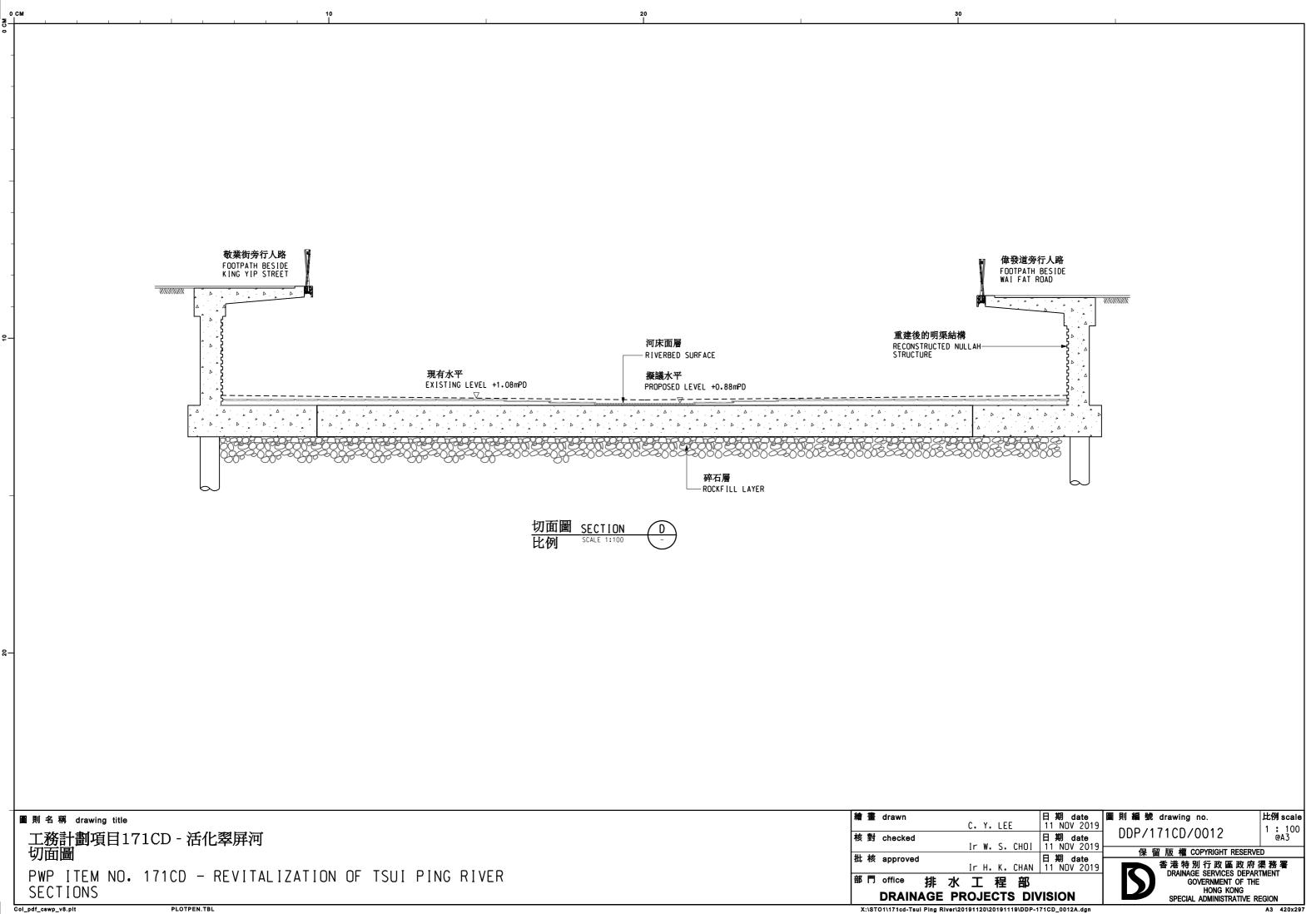
Kuala Lumpur

Suite 8.01, Level 8, Menara Binjai No 2 Jalan Binjai, 50450 Kuala Lumpur Malaysia Tel: (603) 2386 7858 Fax: (603) 2386 7711

General E-mail: info.my@atkinsglobal.com


Bangalore


10th Floor, Safina Towers 3 Ali Asker Road Bangalore, Karnataka - 560052 India Tel: (91) 80 4019 9199 Fax: (91) 80 4147 5822 General E-mail: india.office@atkinsglobal.com


Delhi

19 Floor - Tower C, DLF Cyber Greens DLF Cyber City, DLF Phase - III Gurgáon, Haryana-122 002 India Tel: (91) 124 384 7199 Fax: (91) 124 401 4550 General E-mail: india.office@atkinsglobal.com

